Improving Short-Term Load Forecasting with Multi-Scale Convolutional Neural Networks and Transformer-Based Multi-Head Attention Mechanisms

卷积神经网络 计算机科学 变压器 期限(时间) 人工神经网络 短时记忆 人工智能 主管(地质) 机器学习 工程类 循环神经网络 电气工程 电压 地质学 物理 量子力学 地貌学
作者
Sheng Ding,Dongyi He,Guiran Liu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (24): 5023-5023
标识
DOI:10.3390/electronics13245023
摘要

This research introduces an original approach to time series forecasting through the use of multi-scale convolutional neural networks with Transformer modules. The objective is to focus on the limitations of short-term load forecasting in terms of complex spatio-temporal dependencies. The model begins with the convolutional layers, which perform feature extraction from the time series data to look for features with different temporal resolutions. The last step involves making use of the self-attention component of the Transformer block, which tries to find the long-range dependencies within the series. Also, a spatial attention layer is included to handle the interactions among the different samples. Equipped with these features, the model is able to make predictions. Experimental results show that this model performs better compared to the time series forecasting models in the literature. It is worth mentioning that the MSE score or mean square error of the model was 0.62, while the measure of fit R2 was 0.91 in predicting the individual household electric power consumption dataset. The baseline models for this dataset such as the LSTM model had an MSE of 2.324 and R2 value of 0.79, showing that the proposed model was significantly improved by a margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的霸天哥应助WLWLW采纳,获得30
刚刚
Maestro_S应助jyyg采纳,获得10
刚刚
不愿透露姓名科研人完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助joruruo采纳,获得10
刚刚
nancyshine完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
liuqizong123完成签到,获得积分10
2秒前
东晓完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
科研通AI5应助kk采纳,获得10
4秒前
叶子发布了新的文献求助10
4秒前
xubee发布了新的文献求助10
4秒前
随心发布了新的文献求助10
4秒前
xiaobai完成签到,获得积分10
4秒前
5秒前
深情安青应助友好的半仙采纳,获得10
5秒前
NexusExplorer应助lss采纳,获得10
6秒前
6秒前
6秒前
额度发布了新的文献求助10
7秒前
研友_89jWGL发布了新的文献求助10
7秒前
7秒前
小姜醒醒完成签到,获得积分10
7秒前
畅快山兰发布了新的文献求助10
7秒前
清脆半邪发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
西呱呱发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
科研板砖完成签到,获得积分10
9秒前
bobo关注了科研通微信公众号
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426