Improving Short-Term Load Forecasting with Multi-Scale Convolutional Neural Networks and Transformer-Based Multi-Head Attention Mechanisms

卷积神经网络 计算机科学 变压器 期限(时间) 人工神经网络 短时记忆 人工智能 主管(地质) 机器学习 工程类 循环神经网络 电气工程 电压 地质学 物理 量子力学 地貌学
作者
Sheng Ding,Dongyi He,Guiran Liu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (24): 5023-5023
标识
DOI:10.3390/electronics13245023
摘要

This research introduces an original approach to time series forecasting through the use of multi-scale convolutional neural networks with Transformer modules. The objective is to focus on the limitations of short-term load forecasting in terms of complex spatio-temporal dependencies. The model begins with the convolutional layers, which perform feature extraction from the time series data to look for features with different temporal resolutions. The last step involves making use of the self-attention component of the Transformer block, which tries to find the long-range dependencies within the series. Also, a spatial attention layer is included to handle the interactions among the different samples. Equipped with these features, the model is able to make predictions. Experimental results show that this model performs better compared to the time series forecasting models in the literature. It is worth mentioning that the MSE score or mean square error of the model was 0.62, while the measure of fit R2 was 0.91 in predicting the individual household electric power consumption dataset. The baseline models for this dataset such as the LSTM model had an MSE of 2.324 and R2 value of 0.79, showing that the proposed model was significantly improved by a margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
5秒前
感动的又槐完成签到 ,获得积分10
5秒前
vivian完成签到,获得积分10
7秒前
小李博士发布了新的文献求助10
7秒前
8秒前
gzxxx发布了新的文献求助30
11秒前
慈祥的冰淇淋完成签到,获得积分10
11秒前
jiajiajai完成签到,获得积分10
11秒前
JamesPei应助Echo采纳,获得10
12秒前
Aurora完成签到,获得积分10
13秒前
爆米花应助邢文瑞采纳,获得10
14秒前
14秒前
善学以致用应助博修采纳,获得10
15秒前
O泡果奶发布了新的文献求助10
15秒前
柯一一应助aha采纳,获得10
15秒前
研友_VZG7GZ应助小李博士采纳,获得10
15秒前
PGR关闭了PGR文献求助
15秒前
科研小李发布了新的文献求助10
18秒前
晶生完成签到,获得积分10
21秒前
彭于彦祖应助有爱便神经采纳,获得30
21秒前
22秒前
22秒前
tuzhihong发布了新的文献求助10
22秒前
可可完成签到,获得积分10
25秒前
Echo发布了新的文献求助10
26秒前
26秒前
邢文瑞发布了新的文献求助10
27秒前
Magali应助烂漫的从彤采纳,获得30
27秒前
27秒前
没有昵称完成签到,获得积分10
28秒前
ZWK发布了新的文献求助10
29秒前
29秒前
猪猪hero应助七曜采纳,获得10
31秒前
32秒前
32秒前
33秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571