清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving Short-Term Load Forecasting with Multi-Scale Convolutional Neural Networks and Transformer-Based Multi-Head Attention Mechanisms

卷积神经网络 计算机科学 变压器 期限(时间) 人工神经网络 短时记忆 人工智能 主管(地质) 机器学习 工程类 循环神经网络 电气工程 电压 地质学 物理 地貌学 量子力学
作者
Sheng Ding,Dongyi He,Guiran Liu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (24): 5023-5023
标识
DOI:10.3390/electronics13245023
摘要

This research introduces an original approach to time series forecasting through the use of multi-scale convolutional neural networks with Transformer modules. The objective is to focus on the limitations of short-term load forecasting in terms of complex spatio-temporal dependencies. The model begins with the convolutional layers, which perform feature extraction from the time series data to look for features with different temporal resolutions. The last step involves making use of the self-attention component of the Transformer block, which tries to find the long-range dependencies within the series. Also, a spatial attention layer is included to handle the interactions among the different samples. Equipped with these features, the model is able to make predictions. Experimental results show that this model performs better compared to the time series forecasting models in the literature. It is worth mentioning that the MSE score or mean square error of the model was 0.62, while the measure of fit R2 was 0.91 in predicting the individual household electric power consumption dataset. The baseline models for this dataset such as the LSTM model had an MSE of 2.324 and R2 value of 0.79, showing that the proposed model was significantly improved by a margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daixan89完成签到 ,获得积分10
8秒前
jh完成签到 ,获得积分10
27秒前
1分钟前
科研科研发布了新的文献求助10
1分钟前
无花果应助VDC采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
小白t73完成签到 ,获得积分10
1分钟前
1分钟前
VDC发布了新的文献求助10
2分钟前
海边的曼彻斯特完成签到 ,获得积分10
2分钟前
Spring完成签到,获得积分10
2分钟前
专注的觅云完成签到 ,获得积分10
2分钟前
走啊走应助张wx_100采纳,获得10
2分钟前
2分钟前
科研科研发布了新的文献求助10
2分钟前
徐团伟完成签到 ,获得积分10
2分钟前
3分钟前
wjwqz发布了新的文献求助10
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
creep2020完成签到,获得积分10
3分钟前
jrzsy完成签到,获得积分10
3分钟前
3分钟前
催化剂发布了新的文献求助10
4分钟前
科研科研完成签到,获得积分10
4分钟前
科研科研发布了新的文献求助10
4分钟前
wjwqz完成签到,获得积分10
5分钟前
名侦探柯基完成签到 ,获得积分10
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
superLmy完成签到 ,获得积分10
5分钟前
止戈为武完成签到,获得积分10
5分钟前
5分钟前
科研科研发布了新的文献求助10
5分钟前
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
5分钟前
唐泽雪穗发布了新的文献求助10
5分钟前
6分钟前
唐泽雪穗完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
晴莹完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957990
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133332
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116677