Improving Short-Term Load Forecasting with Multi-Scale Convolutional Neural Networks and Transformer-Based Multi-Head Attention Mechanisms

卷积神经网络 计算机科学 变压器 期限(时间) 人工神经网络 短时记忆 人工智能 主管(地质) 机器学习 工程类 循环神经网络 电气工程 电压 地质学 物理 量子力学 地貌学
作者
Sheng Ding,Dongyi He,Guiran Liu
出处
期刊:Electronics [MDPI AG]
卷期号:13 (24): 5023-5023
标识
DOI:10.3390/electronics13245023
摘要

This research introduces an original approach to time series forecasting through the use of multi-scale convolutional neural networks with Transformer modules. The objective is to focus on the limitations of short-term load forecasting in terms of complex spatio-temporal dependencies. The model begins with the convolutional layers, which perform feature extraction from the time series data to look for features with different temporal resolutions. The last step involves making use of the self-attention component of the Transformer block, which tries to find the long-range dependencies within the series. Also, a spatial attention layer is included to handle the interactions among the different samples. Equipped with these features, the model is able to make predictions. Experimental results show that this model performs better compared to the time series forecasting models in the literature. It is worth mentioning that the MSE score or mean square error of the model was 0.62, while the measure of fit R2 was 0.91 in predicting the individual household electric power consumption dataset. The baseline models for this dataset such as the LSTM model had an MSE of 2.324 and R2 value of 0.79, showing that the proposed model was significantly improved by a margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
端庄白开水完成签到,获得积分10
2秒前
吕春雨发布了新的文献求助10
2秒前
大个应助wxp_bioinfo采纳,获得10
3秒前
yqq完成签到 ,获得积分10
3秒前
4秒前
5秒前
芝士发布了新的文献求助10
5秒前
橘子发布了新的文献求助10
6秒前
6秒前
6秒前
晨曦发布了新的文献求助10
7秒前
7秒前
kobiy完成签到 ,获得积分10
7秒前
wu完成签到 ,获得积分10
8秒前
蛋泥完成签到,获得积分10
8秒前
顾矜应助mingjie采纳,获得10
9秒前
zhaowenxian发布了新的文献求助10
9秒前
勤劳傲晴发布了新的文献求助10
10秒前
10秒前
橘子完成签到,获得积分10
12秒前
可耐的从安完成签到 ,获得积分10
13秒前
zho应助背后的诺言采纳,获得10
13秒前
粥粥完成签到,获得积分10
13秒前
14秒前
打打应助陈杰采纳,获得10
15秒前
充电宝应助柔弱凡松采纳,获得10
16秒前
Jasmine发布了新的文献求助10
17秒前
18秒前
18秒前
大气的秋完成签到,获得积分10
19秒前
桐桐应助BB采纳,获得10
19秒前
19秒前
19秒前
曙光完成签到,获得积分10
20秒前
20秒前
大方嵩发布了新的文献求助10
21秒前
陌路发布了新的文献求助20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794