Improving Short-Term Load Forecasting with Multi-Scale Convolutional Neural Networks and Transformer-Based Multi-Head Attention Mechanisms

卷积神经网络 计算机科学 变压器 期限(时间) 人工神经网络 短时记忆 人工智能 主管(地质) 机器学习 工程类 循环神经网络 电气工程 电压 地质学 物理 地貌学 量子力学
作者
Sheng Ding,Dongyi He,Guiran Liu
出处
期刊:Electronics [MDPI AG]
卷期号:13 (24): 5023-5023
标识
DOI:10.3390/electronics13245023
摘要

This research introduces an original approach to time series forecasting through the use of multi-scale convolutional neural networks with Transformer modules. The objective is to focus on the limitations of short-term load forecasting in terms of complex spatio-temporal dependencies. The model begins with the convolutional layers, which perform feature extraction from the time series data to look for features with different temporal resolutions. The last step involves making use of the self-attention component of the Transformer block, which tries to find the long-range dependencies within the series. Also, a spatial attention layer is included to handle the interactions among the different samples. Equipped with these features, the model is able to make predictions. Experimental results show that this model performs better compared to the time series forecasting models in the literature. It is worth mentioning that the MSE score or mean square error of the model was 0.62, while the measure of fit R2 was 0.91 in predicting the individual household electric power consumption dataset. The baseline models for this dataset such as the LSTM model had an MSE of 2.324 and R2 value of 0.79, showing that the proposed model was significantly improved by a margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑志凡完成签到 ,获得积分10
刚刚
1秒前
宋灵竹发布了新的文献求助10
1秒前
无情凡英完成签到,获得积分10
1秒前
2秒前
Sophie的四月物语完成签到 ,获得积分10
3秒前
4秒前
旧巷子里的猫完成签到,获得积分10
4秒前
5秒前
6秒前
FashionBoy应助呆萌的天宇采纳,获得10
8秒前
bkagyin应助研友_LOoomL采纳,获得10
8秒前
田様应助艾利克斯采纳,获得10
9秒前
9秒前
LTW完成签到,获得积分20
9秒前
科研通AI2S应助史道夫采纳,获得10
10秒前
小北应助史道夫采纳,获得10
10秒前
尘飞扬应助史道夫采纳,获得10
10秒前
科研通AI2S应助史道夫采纳,获得10
10秒前
11秒前
共享精神应助flag采纳,获得10
14秒前
14秒前
orixero应助fangzhang采纳,获得10
14秒前
宋灵竹完成签到,获得积分10
15秒前
优美的契完成签到,获得积分10
16秒前
龙卷风发布了新的文献求助10
21秒前
luyao970131发布了新的文献求助10
22秒前
24秒前
26秒前
29秒前
脑洞疼应助聪慧的致远采纳,获得10
31秒前
嗯哼应助坚定的绯采纳,获得30
32秒前
无情凡英发布了新的文献求助10
32秒前
FashionBoy应助fangzhang采纳,获得10
32秒前
32秒前
Jasper应助痴情的绮菱采纳,获得10
33秒前
云中鹤发布了新的文献求助10
33秒前
彳亍1117应助蔡宏达采纳,获得10
34秒前
36秒前
思源应助糖焗小馒头采纳,获得10
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268281
求助须知:如何正确求助?哪些是违规求助? 2907854
关于积分的说明 8343465
捐赠科研通 2578165
什么是DOI,文献DOI怎么找? 1401736
科研通“疑难数据库(出版商)”最低求助积分说明 655174
邀请新用户注册赠送积分活动 634291