亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

User Behavior Simulation with Large Language Model-based Agents for Recommender Systems

推荐系统 计算机科学 人机交互 情报检索
作者
Lei Wang,Jingsen Zhang,Hao Yang,Z. P. Chen,Jiakai Tang,Zeyu Zhang,Xu Chen,Yankai Lin,Hao Sun,Ruihua Song,Wayne Xin Zhao,Jun Xu,Zhicheng Dou,Jun Wang,Ji-Rong Wen
出处
期刊:ACM Transactions on Information Systems 被引量:1
标识
DOI:10.1145/3708985
摘要

Simulating high quality user behavior data has always been a fundamental yet challenging problem in human-centered applications such as recommendation systems, social networks, among many others. The major difficulty of user behavior simulation originates from the intricate mechanism of human cognitive and decision processes. Recently, substantial evidence have suggested that by learning huge amounts of web knowledge, large language models (LLMs) can achieve human-like intelligence and generalization capabilities. Inspired by such capabilities, in this paper, we take an initial step to study the potential of using LLMs for user behavior simulation in the recommendation domain. To make LLMs act like humans, we design profile, memory and action modules to equip them, building LLM-based agents to simulate real users. To enable interactions between different agents and observe their behavior patterns, we design a sandbox environment, where each agent can interact with the recommendation system, and different agents can converse with their friends via one-to-one chatting or one-to-many social broadcasting. In the experiments, we first demonstrate the believability of the agent-generated behaviors based on both subjective and objective evaluations. Then, to show the potential applications of our method, we simulate and study two social phenomenons including (1) information cocoons and (2) user conformity behaviors. We find that controlling the personalization degree of recommendation algorithms and improving the heterogeneity of user social relations can be two effective strategies for alleviating the problem of information cocoon, and the conformity behaviors can be highly influenced by the amount of user social relations. To advance this direction, we have released our project at https://github.com/RUC-GSAI/YuLan-Rec .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂炫一大晚完成签到 ,获得积分10
3秒前
ly发布了新的文献求助10
5秒前
幸运星发布了新的文献求助10
6秒前
7秒前
不开心就吃糖完成签到 ,获得积分10
7秒前
SS完成签到,获得积分0
11秒前
ly完成签到,获得积分10
13秒前
呆萌小鸭子完成签到 ,获得积分10
17秒前
18秒前
酷波er应助务实澜采纳,获得10
21秒前
Dreamy完成签到,获得积分10
25秒前
Dreamy发布了新的文献求助10
33秒前
学不完了完成签到 ,获得积分10
34秒前
缪尔岚完成签到,获得积分10
37秒前
40秒前
幸运星完成签到,获得积分10
44秒前
bingbing34发布了新的文献求助10
45秒前
45秒前
赘婿应助南山荣熙采纳,获得10
51秒前
linnett发布了新的文献求助10
58秒前
舒心豪英完成签到 ,获得积分10
1分钟前
好巧完成签到,获得积分10
1分钟前
枫于林完成签到 ,获得积分10
1分钟前
失眠梦柏完成签到,获得积分10
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
失眠梦柏发布了新的文献求助10
1分钟前
科研通AI2S应助zhxq采纳,获得10
1分钟前
1分钟前
king完成签到,获得积分10
1分钟前
skinny发布了新的文献求助10
1分钟前
king发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zxy发布了新的文献求助10
1分钟前
天天快乐应助柏白筠采纳,获得10
1分钟前
储灿发布了新的文献求助10
1分钟前
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121554
关于积分的说明 9347855
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273