亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

OA-MEN: a fusion deep learning approach for enhanced accuracy in knee osteoarthritis detection and classification using X-Ray imaging

骨关节炎 人工智能 融合 深度学习 医学 计算机科学 模式识别(心理学) 病理 哲学 语言学 替代医学
作者
Xiaolu Ren,Lingxuan Hou,Shan Liu,Peng Wu,Siming Liang,Haitian Fu,Chengquan Li,Ting Li,Yongjing Cheng
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fbioe.2024.1437188
摘要

Knee osteoarthritis (KOA) constitutes the prevailing manifestation of arthritis. Radiographs function as a common modality for primary screening; however, traditional X-ray evaluation of osteoarthritis confronts challenges such as reduced sensitivity, subjective interpretation, and heightened misdiagnosis rates. The objective of this investigation is to enhance the validation and optimization of accuracy and efficiency in KOA assessment by utilizing fusion deep learning techniques. This study aims to develop a highly accurate and lightweight model for automatically predicting and classifying KOA through knee X-ray imaging. We propose a deep learning model named OA-MEN, which integrates a hybrid model combining ResNet and MobileNet feature extraction with multi-scale feature fusion. This approach ensures enhanced extraction of semantic information without losing the advantages of large feature maps provided by high image resolution in lower layers of the network. This effectively expands the model's receptive field and strengthens its understanding capability. Additionally, we conducted unseen-data tests and compared our model with widely used baseline models to highlight its superiority over conventional approaches. The OA-MEN model demonstrated exceptional performance in tests. In the unseen-data test, our model achieved an average accuracy (ACC) of 84.88% and an Area Under the Curve (AUC) of 89.11%, marking improvements over the best-performing baseline models. These results showcase its improved capability in predicting KOA from X-ray images, making it a promising tool for assisting radiologists in diagnosis and treatment selection in clinical settings. Leveraging deep learning for osteoarthritis classification guarantees heightened efficiency and accuracy. The future goal is to seamlessly integrate deep learning and advanced computational techniques with the expertise of medical professionals.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
yu发布了新的文献求助30
25秒前
30秒前
大鱼发布了新的文献求助20
42秒前
xiawanren00完成签到,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
囚徒发布了新的文献求助10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
852应助夏末采纳,获得10
3分钟前
3分钟前
席江海完成签到,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
3分钟前
3分钟前
爱科研的小周完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
夏末发布了新的文献求助10
4分钟前
夏末完成签到,获得积分10
4分钟前
4分钟前
5分钟前
jwq发布了新的文献求助10
5分钟前
jwq完成签到,获得积分10
5分钟前
efren1806完成签到,获得积分10
5分钟前
6分钟前
陈陈发布了新的文献求助10
6分钟前
赘婿应助陈陈采纳,获得10
6分钟前
完美世界应助cacaldon采纳,获得10
7分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
爆米花应助科研通管家采纳,获得10
7分钟前
BCKT完成签到,获得积分10
7分钟前
8分钟前
姚老表完成签到,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
小马甲应助科研通管家采纳,获得10
9分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000782
关于积分的说明 8793674
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471938
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313