Machine Learning for Sparse Nonlinear Modeling and Control

非线性系统 计算机科学 控制(管理) 机器学习 非线性模型 人工智能 物理 量子力学
作者
Steven L. Brunton,Nicholas Zolman,J. Nathan Kutz,Urban Fasel
出处
期刊:Annual review of control, robotics, and autonomous systems [Annual Reviews]
标识
DOI:10.1146/annurev-control-030123-015238
摘要

Machine learning is rapidly advancing nearly every field of science and engineering, and control theory is no exception. In particular, it has shown incredible promise for handling several of the main challenges facing modern dynamics and control, including complexity, unmodeled dynamics, strong nonlinearity, and hidden variables. However, machine learning models are often expensive to train and deploy, fail to generalize beyond the training data, and suffer from a lack of explainability, interpretability, and guarantees, all of which limit their use in real-world and safety-critical control applications. Sparse nonlinear modeling and control techniques are a powerful class of machine learning that promote parsimony through sparse optimization, providing data-efficient models that are more interpretable and generalizable and have proven effective for control. In this review, we explore the use of sparse optimization in the context of machine learning to develop compact models and controllers that are easy to train, require significantly less data, and make low-latency predictions. In particular, we focus on applications in model predictive control and reinforcement learning, two of the foundational algorithms in control theory.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
cocolu应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得20
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
cocolu应助科研通管家采纳,获得10
2秒前
博弈春秋应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得50
2秒前
2秒前
2秒前
wawuuuuu完成签到,获得积分10
4秒前
4秒前
4秒前
舒适的冰凡完成签到,获得积分10
5秒前
Conner完成签到 ,获得积分10
6秒前
跑快点完成签到,获得积分10
6秒前
6秒前
是味发布了新的文献求助40
7秒前
SYanan完成签到 ,获得积分10
7秒前
bkagyin应助zhangzhichun1109采纳,获得20
8秒前
sunsun10086完成签到 ,获得积分10
8秒前
Lucas应助积极的德地采纳,获得10
8秒前
orchid发布了新的文献求助10
8秒前
曹文鹏发布了新的文献求助10
9秒前
无花果应助一站到底采纳,获得10
10秒前
万能图书馆应助ouo采纳,获得10
10秒前
13秒前
lojack完成签到,获得积分10
15秒前
16秒前
16秒前
科研小木虫完成签到,获得积分20
17秒前
领导范儿应助袁心同采纳,获得10
17秒前
充电宝应助parzival采纳,获得10
17秒前
LS发布了新的文献求助10
17秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339448
求助须知:如何正确求助?哪些是违规求助? 2967347
关于积分的说明 8629691
捐赠科研通 2646892
什么是DOI,文献DOI怎么找? 1449385
科研通“疑难数据库(出版商)”最低求助积分说明 671382
邀请新用户注册赠送积分活动 660253