Automated damage detection for open-air and underwater navigation infrastructure using generative AI-produced training data for deep learning models

计算机科学 人工智能 领域(数学) 杠杆(统计) 深度学习 分割 交叉口(航空) 水下 生成模型 机器学习 合成数据 生成语法 工程类 纯数学 航空航天工程 地质学 海洋学 数学
作者
Quincy Alexander,Yasutaka Narazaki,Andrew Maxwell,S.C. Wang,Billie F. Spencer
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241295380
摘要

Research has been continually growing toward the development of computer vision-based inspection tools for large-scale civil infrastructure; however, many deep learning techniques require large datasets to properly train models. Collecting field data can be costly and time-consuming, or may not be feasible, which has led to efforts to leverage synthetic data to supplement field data. Recent advances in text-to-image generative artificial intelligence (AI) offer the potential to quickly create realistic synthetic images of damaged infrastructure, including the complexities of the environment found in the field. In this study, the use of text-to-image generation to create a multiclass synthetic training dataset for inland navigation infrastructure is proposed, including damage of underwater structural components. Images of steel and concrete were generated that are representative of inland navigation infrastructure components. The images were labeled for semantic segmentation, and a model was trained using open-to-air and underwater scenes. The model trained using synthetic images was tested against field images, and the performance measured using recall, precision, and intersection over union was found to be comparable to a model trained using only field images. These results demonstrate that text-to-image generative AI tools were shown to be effective for generation of synthetic images with specifically defined conditions, saving time and cost, while providing a similar performance as the use of field-collected images. While intended for damage detection in large-scale civil infrastructure, this concept could be expanded to a number of areas as the generative AI models continue to improve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BBC关注了科研通微信公众号
刚刚
刚刚
SpursGo发布了新的文献求助50
1秒前
自由的沛山完成签到,获得积分10
1秒前
好烦给好烦的求助进行了留言
2秒前
zbw发布了新的文献求助10
2秒前
wheattt发布了新的文献求助10
3秒前
光亮向露完成签到,获得积分10
3秒前
无花果应助Missing采纳,获得10
3秒前
充电宝应助莫等闲191采纳,获得10
3秒前
lubing发布了新的文献求助10
4秒前
4秒前
lanjq兰坚强完成签到,获得积分10
4秒前
5秒前
协和小飞龙完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
笨笨岂愈完成签到,获得积分20
6秒前
幕帆应助VDC采纳,获得10
6秒前
充电宝应助ldm采纳,获得10
7秒前
Jenny给lingua的求助进行了留言
7秒前
小兆完成签到,获得积分10
7秒前
7秒前
晴天完成签到,获得积分10
8秒前
8秒前
8秒前
缓慢的悒发布了新的文献求助10
9秒前
小磊的科研路完成签到,获得积分10
9秒前
0000完成签到,获得积分10
10秒前
10秒前
xiao发布了新的文献求助10
11秒前
传奇3应助健忘的芷荷采纳,获得10
11秒前
12秒前
laser完成签到,获得积分10
12秒前
12秒前
li完成签到,获得积分10
12秒前
胡英俊完成签到,获得积分10
12秒前
Akim应助wheattt采纳,获得10
13秒前
15秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299266
求助须知:如何正确求助?哪些是违规求助? 2934183
关于积分的说明 8467773
捐赠科研通 2607652
什么是DOI,文献DOI怎么找? 1423827
科研通“疑难数据库(出版商)”最低求助积分说明 661704
邀请新用户注册赠送积分活动 645391