已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deciphering Customer Satisfaction: A Machine Learning-Oriented Method Using Agglomerative Clustering for Predictive Modeling and Feature Selection

特征选择 层次聚类 选择(遗传算法) 特征(语言学) 聚类分析 机器学习 顾客满意度 计算机科学 人工智能 企业管理 数据挖掘 工程类 业务 营销 哲学 工商管理 语言学
作者
Nisrine Rezki,Mohamed Mansouri,Rachid Oucheikh
出处
期刊:Management Systems in Production Engineering 卷期号:33 (1): 60-70
标识
DOI:10.2478/mspe-2025-0007
摘要

Abstract In contemporary enterprises, customer satisfaction analysis has become a critical area of concentration. Being able to understand and predict customer satisfaction is becoming more and more important as companies try to develop and launch new products. Leveraging customer data intelligently and employing robust data analytics techniques are essential for meeting this imperative. With this objective in mind, the study proposes a machine learning-based approach to analyze and discern the variables influencing customer satisfaction. Specifically, the study utilizes agglomerative clustering for data segmentation and feature identification, followed by a Random Forest Classifier as machine learning (ML) model for prediction. Performance metrics such as accuracy, recall, precision and F1-score are employed for model evaluation, ensuring robustness and reliability in the predictive process. Furthermore, it aims to predict the impact of enhancing specific product attributes on customer satisfaction. To provide a tangible demonstration of the proposed methodology, a comprehensive case study is conducted. By systematically integrating clustering techniques into the feature selection and modeling process, this framework furnishes a structured methodology for data-driven decision-making and predictive analytics. This holistic approach not only enriches the comprehension of intricate datasets but also facilitates the development of resilient predictive models characterized by enhanced accuracy and interpretability. By segmenting customers based on their responses, we discerned specific areas of satisfaction and dissatisfaction, providing actionable insights for targeted strategies aimed at improving overall satisfaction. The insights and customer clustering derived from this study can guide these targeted strategies to enhance customer satisfaction and inform future product development initiatives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仙乐完成签到,获得积分10
刚刚
2秒前
科研通AI5应助日落采纳,获得10
5秒前
7秒前
8秒前
搜集达人应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
yyy完成签到,获得积分10
19秒前
19秒前
笑点低绿竹完成签到 ,获得积分10
21秒前
22秒前
23秒前
小二郎应助PrayOne采纳,获得10
23秒前
星辰大海应助清脆松采纳,获得10
23秒前
25秒前
26秒前
yyy发布了新的文献求助10
26秒前
27秒前
Jasper应助一匹黑狼采纳,获得10
27秒前
搜集达人应助tututu采纳,获得30
28秒前
佳仔发布了新的文献求助10
28秒前
于思枫发布了新的文献求助10
31秒前
xuli-888完成签到,获得积分10
32秒前
武夷山发布了新的文献求助10
32秒前
李文岐完成签到 ,获得积分10
34秒前
34秒前
佳仔完成签到,获得积分10
35秒前
捏个小雪团完成签到,获得积分10
37秒前
39秒前
39秒前
Rr完成签到,获得积分10
39秒前
一匹黑狼发布了新的文献求助10
40秒前
hyan关注了科研通微信公众号
43秒前
43秒前
tang发布了新的文献求助10
44秒前
在水一方应助于思枫采纳,获得30
45秒前
45秒前
48秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555605
求助须知:如何正确求助?哪些是违规求助? 3131310
关于积分的说明 9390527
捐赠科研通 2830903
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803