Land Snow Surface Temperature Estimation Using an Optimized Near Real-Time Passive Microwave Algorithm

环境科学 遥感 微波食品加热 气象学 计算机科学 北极的 辐射传输 算法 地质学 量子力学 电信 海洋学 物理
作者
Qinghuan Li,Richard Kelly,Leena Leppänen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3528333
摘要

Land surface temperature (LST) is a crucial geophysical parameter for understanding cryospheric processes such as snow accumulation, freeze-thaw cycles, and the energy budget. However, most existing passive microwave LST retrieval algorithms are not optimized for Land Snow Surface Temperature (LSST) estimation, presenting a significant limitation for remote sensing observation of the cryosphere. To address this, this study developed a robust, all-weather, near real-time, standalone passive microwave-based LSST retrieval algorithm optimized for snow-covered conditions in the Northern Hemisphere. In this study, LSST is defined as the air temperature close to the snow surface. Due to limited in-situ observations in Arctic regions and complex microwave radiative transfer over snow-covered landscapes, the Multi-Layer Perceptron (MLP) model, which is referred to in this study as the MLP_Model, was developed. Using 2-meter air temperature as a proxy to present the air temperature close to the snow surface, this study employed Multi-Task Learning (MTL) to integrate data from in-situ Automatic Weather Stations (AWS), the ECMWF Reanalysis v5 dataset (ERA5), and simulations from the Microwave Emission Model of Layered Snowpacks (MEMLS) for model training. This integration method balanced the information from multiple data sources, thereby mitigating potential uncertainties associated with training empirical models on limited, single-source datasets while ensuring that the trained model remains broadly consistent with the currently available data and established physical principles. Data from MEMLS simulations act as a physical constraint in the training process, ensuring the model's estimates adhere to physical model expectations. The MLP_Model estimated LSST was compared with LSST from the AWS network and the ERA5 in the Northern Hemisphere for evaluation. The Mean Absolute Error (MAE) values were 3.74 and 4.38 °C, while 75th Percentile Absolute Error (Q3AE) were 5.61 °C and 5.71 °C, respectively. Compared with the passive microwave LSST estimation algorithm developed by Kelly 2003 (Kelly_2003), which has been used in the Japan Aerospace Exploration Agency (JAXA) operational snow retrieval algorithm, the MLP_Model demonstrated a reduction in the MAE by 1.5 °C and the Q3AE by 2.1 °C. These results indicate that this newly developed model can provide daily, reliable, and consistent near real-time LSST estimates based solely on passive microwave remote sensing observations. The model-estimated LSST could serve as a reliable and independent reference for cryospheric climate studies, offering valuable input for data assimilation and reanalysis efforts. Furthermore, it could support other near real-time operational passive microwave-based retrievals of cryospheric geophysical parameters such as snow depth or freeze-thaw states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哒哒哒完成签到,获得积分10
1秒前
2秒前
2秒前
川农辅导员完成签到,获得积分10
2秒前
NexusExplorer应助自然自行车采纳,获得10
4秒前
DDD应助诚心一兰采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
CipherSage应助明芬采纳,获得10
6秒前
钟迪完成签到,获得积分10
6秒前
牛牛发布了新的文献求助10
8秒前
9秒前
苦尽甘来完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
兴奋烨华完成签到 ,获得积分10
15秒前
15秒前
16秒前
机灵的凡松完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI6应助NXK采纳,获得10
18秒前
神锋天下完成签到,获得积分10
18秒前
Misaky发布了新的文献求助10
18秒前
18秒前
明芬发布了新的文献求助10
19秒前
郭甜甜发布了新的文献求助20
19秒前
19秒前
乐一李应助洁净的访文采纳,获得10
20秒前
Asura完成签到,获得积分10
22秒前
十三完成签到 ,获得积分10
22秒前
22秒前
个性的抽象完成签到 ,获得积分10
23秒前
zhuiyu发布了新的文献求助10
23秒前
科研通AI6应助牛牛采纳,获得10
24秒前
李爱国应助吴学仕采纳,获得10
24秒前
DDD应助积极的凌波采纳,获得10
25秒前
轻松的枫叶完成签到,获得积分20
25秒前
kiminonawa应助读书的时候采纳,获得10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800