光学相干层析成像
基础(证据)
可靠性(半导体)
计算机科学
视网膜
估计
连贯性(哲学赌博策略)
断层摄影术
人工智能
可靠性工程
验光服务
医学
眼科
工程类
统计
数学
物理
放射科
地理
系统工程
功率(物理)
考古
量子力学
作者
Yuanyuan Peng,Aidi Lin,Meng Wang,Tian Lin,Linna Liu,Jian Wu,Ke Zou,Tingkun Shi,Lixia Feng,Zhen Liang,Tao Li,Dan Liang,Shanshan Yu,Dawei Sun,Jing Luo,Ling Gao,Xinjian Chen,Ching‐Yu Cheng,Huazhu Fu,Haoyu Chen
标识
DOI:10.1016/j.xcrm.2024.101876
摘要
Inability to express the confidence level and detect unseen disease classes limits the clinical implementation of artificial intelligence in the real world. We develop a foundation model with uncertainty estimation (FMUE) to detect 16 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieves a higher F1 score of 95.74% than other state-of-the-art algorithms (92.03%-93.66%) and improves to 97.44% with threshold strategy. The model achieves similar excellent performance on two external test sets from the same and different OCT machines. In human-model comparison, FMUE achieves a higher F1 score of 96.30% than retinal experts (86.95%, p = 0.004), senior doctors (82.71%, p < 0.001), junior doctors (66.55%, p < 0.001), and generative pretrained transformer 4 with vision (GPT-4V) (32.39%, p < 0.001). Besides, FMUE predicts high uncertainty scores for >85% images of non-target-category diseases or with low quality to prompt manual checks and prevent misdiagnosis. Our FMUE provides a trustworthy method for automatic retinal anomaly detection in a clinical open-set environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI