CRISPR-Based Homogeneous Electrochemical Strategy for Near-Zero Background Detection of Breast Cancer Extracellular Vesicles via Fluidity-Enhanced Magnetic Capture Nanoprobe

化学 纳米探针 同种类的 细胞外小泡 乳腺癌 生物物理学 纳米技术 纳米颗粒 癌症 细胞生物学 医学 物理 材料科学 生物 内科学 热力学
作者
Limin Yang,Jingang Zhang,Jing Zhang,Ting Hou,Qian Gao,Xiaojuan Liu,Feng Li
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05181
摘要

Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared. After capturing BC-EVs, the AND logic gate-based catalytic hairpin assembly (CHA) and the trans-cleavage activity of CRISPR-Cas12a against the magnetic signal nanoprobes were triggered successively, generating a significant electrochemical signal. Notably, the as-developed metal-mediated magnetic signal nanoprobes could efficiently decrease the background signal by magnetic separation, endowing the method with a high signal-to-noise ratio. Consequently, by ingeniously integrating DNA logic gate-based CRISPR-CHA signal amplification with dual magnetic nanoprobes in a homogeneous electrochemical strategy, precise identification and ultrasensitive detection of BC-EVs was successfully achieved through simultaneous and specific recognition of dual protein markers on the BC-EVs surface. More importantly, this approach could effectively discriminate specific subgroups of BC-EVs in clinical serum samples, which may provide great opportunities for the accurate diagnosis and prognosis evaluation of breast cancer in a noninvasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨碎寒江发布了新的文献求助150
1秒前
1秒前
kingwill应助炬火采纳,获得20
2秒前
2秒前
阿超完成签到,获得积分10
2秒前
3秒前
科研通AI5应助Sunshine采纳,获得10
3秒前
Akim应助苹果花采纳,获得10
3秒前
Lucas应助柯米克采纳,获得10
3秒前
材料小白完成签到,获得积分10
3秒前
4秒前
星辰大海应助王其超采纳,获得10
5秒前
学习的小崽完成签到,获得积分10
5秒前
Apei应助成就初阳采纳,获得10
6秒前
vampirell完成签到,获得积分0
6秒前
7秒前
7秒前
7秒前
科研通AI5应助金国小王爷采纳,获得10
8秒前
零零零零发布了新的文献求助10
8秒前
MaHongyang发布了新的文献求助10
8秒前
8秒前
ayayaya发布了新的文献求助10
8秒前
合适磬发布了新的文献求助10
9秒前
李健应助mmy采纳,获得30
9秒前
9秒前
10秒前
火星上的羽毛完成签到,获得积分10
10秒前
美好小熊猫完成签到,获得积分10
10秒前
11秒前
我爱电催化完成签到,获得积分10
11秒前
忆安发布了新的文献求助10
11秒前
哔哔鱼完成签到,获得积分10
11秒前
12秒前
12秒前
Silvia发布了新的文献求助10
12秒前
13秒前
陈印发布了新的文献求助10
13秒前
楚子航发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490539
求助须知:如何正确求助?哪些是违规求助? 3077414
关于积分的说明 9148826
捐赠科研通 2769667
什么是DOI,文献DOI怎么找? 1519863
邀请新用户注册赠送积分活动 704336
科研通“疑难数据库(出版商)”最低求助积分说明 702135