堆积
材料科学
范德瓦尔斯力
二次谐波产生
非线性光学
能量转换效率
准相位匹配
光电子学
高次谐波产生
非线性系统
相(物质)
点反射
拓扑(电路)
光学
物理
凝聚态物理
激光器
量子力学
分子
数学
核磁共振
组合数学
作者
Yilin Tang,Kabilan Sripathy,Hao Qin,Zhuoyuan Lu,Giovanni Guccione,Jiří Janoušek,Yi Zhu,Md. Mehedi Hasan,Yoshihiro Iwasa,Ping Koy Lam,Yuerui Lu
标识
DOI:10.1038/s41467-024-53472-2
摘要
Quasi-phase matching (QPM) is a technique extensively utilized in nonlinear optics for enhancing the efficiency and stability of frequency conversion processes. However, the conventional QPM relies on periodically poled ferroelectric crystals, which are limited in availability. The 3R phase of molybdenum disulfide (3R-MoS2), a transition metal dichalcogenide (TMDc) with the broken inversion symmetry, stands out as a promising candidate for QPM, enabling efficient nonlinear process. Here, we experimentally demonstrate the QPM at nanoscale, utilizing van der Waals stacking of 3R-MoS2 layers with specific orientation to realize second harmonic generation (SHG) enhancement beyond the non QPM limit. We have also demonstrated enhanced spontaneous parametric down-conversion (SPDC) via QPM of 3R-MoS2 homo-structure, enabling more efficient generation of entangled photon pairs. The tunable capacity of 3R-MoS2 van der Waals stacking provides a platform for tuning phase-matching condition. This technique opens interesting possibilities for potential applications in nonlinear process and quantum technology. Quasi-phase matching (QPM) is a well-known technique to improve the efficiency of frequency conversion processes in 3D nonlinear optical materials. Here, the authors report the implementation of nanoscale QPM in 2D 3R-stacked twisted MoS2, showing enhanced second harmonic generation and spontaneous parametric down-conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI