Gain Dynamics in Integrated Waveguide Amplifier Based on Erbium-Doped Thin-Film Lithium Niobate

铌酸锂 材料科学 波导管 兴奋剂 光电子学 放大器 光放大器 薄膜 掺铒光纤放大器 锂(药物) 光学 激光器 纳米技术 物理 医学 CMOS芯片 内分泌学
作者
Minglu Cai,Tianyi Li,Xujia Zhang,Hongyi Zhang,Long Wang,Hao Li,Yuanlin Zheng,Hailang Dai,Jianping Chen,Minglu Cai
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:11 (11): 4923-4932
标识
DOI:10.1021/acsphotonics.4c01433
摘要

Erbium-doped thin-film lithium niobate (Er:TFLN) provides efficient solutions for monolithic integrated waveguide amplifiers and lasers, as well as the potential for electro-optic modulation and nonlinear application. However, the gain and saturation absorption characteristics usually lack dynamic analysis, which is highly valuable for various gain devices. We provide a practical framework for correlating the erbium absorption and signal wavelength/power in the erbium-doped waveguide amplifier (EDWA) on the Er:TFLN platform, demonstrating the gain performance of single-wavelength or multiwavelength signal amplification. The 10 cm long Er:TFLN EDWA achieves 62.76 dB signal enhancement at 1531 nm, with 22.26 dB internal net gain at the small signal region. Additionally, a significant on-chip output power of 16.65 dBm with 7.65 dB internal net gain is realized at 1550 nm. Furthermore, theoretical models and experimental results have been conducted on signal saturation power, output power, and noise figure. In multiwavelength signal amplification experiments, approximately 20 dB internal net gain and a noise figure of 4.36 dB are achieved for an electro-optic frequency comb with a 10 GHz repetition rate. Moreover, an internal net gain exceeding 20 dB is achieved across 45% of C-band broadband signals, establishing a solid foundation for relay amplification applications in high-capacity and multichannel data transmission systems. The gain dynamics proposed in this work can be effectively applied to design optimal EDWAs and lasers to construct monolithic integrated lithium niobate systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王电催化完成签到,获得积分10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
胡萝卜应助科研通管家采纳,获得20
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得30
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助hqq采纳,获得10
2秒前
小猫爱吃鱼完成签到 ,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
李佳洲完成签到,获得积分10
2秒前
Planta发布了新的文献求助10
3秒前
3秒前
4秒前
罗_应助麦克白的奥利奥采纳,获得10
4秒前
4秒前
lxy发布了新的文献求助10
5秒前
饱饱完成签到,获得积分20
6秒前
6秒前
无花果应助求文献采纳,获得10
7秒前
温水云发布了新的文献求助10
7秒前
瑞瑞发布了新的文献求助10
8秒前
111发布了新的文献求助30
8秒前
打打应助DANTE采纳,获得10
8秒前
乐乐应助一颗甜柚采纳,获得10
9秒前
9秒前
9秒前
11秒前
欣喜沛芹发布了新的文献求助10
11秒前
shilong.yang发布了新的文献求助20
12秒前
13秒前
13秒前
VDC应助ZeKaWa采纳,获得30
13秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3703338
求助须知:如何正确求助?哪些是违规求助? 3253043
关于积分的说明 9882470
捐赠科研通 2965143
什么是DOI,文献DOI怎么找? 1626136
邀请新用户注册赠送积分活动 770477
科研通“疑难数据库(出版商)”最低求助积分说明 742922