摘要
Biomedical ChromatographyVolume 0, Issue 0 e6041 EDITORIAL Enantioseparation and enantiorecognition Ravi Bhushan, Corresponding Author Ravi Bhushan [email protected] [email protected] orcid.org/0000-0001-5098-9759 Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India Correspondence Ravi Bhushan, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]; [email protected]Search for more papers by this author Ravi Bhushan, Corresponding Author Ravi Bhushan [email protected] [email protected] orcid.org/0000-0001-5098-9759 Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India Correspondence Ravi Bhushan, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]; [email protected]Search for more papers by this author First published: 10 November 2024 https://doi.org/10.1002/bmc.6041Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookxLinkedInRedditWechat REFERENCES Bhushan, R. (2023). Enantioselective and chemoselective optical detection of chiral organic compounds without resorting to chromatography. Chemistry-An Asian Journal, 18(24), e202300825. https://doi.org/10.1002/asia.202300825 10.1002/asia.202300825 CASPubMedGoogle Scholar Bhushan, R. (2024). Sustainable solutions for direct TLC enantioseparation with in-home, thought-out, prepared/modified chiral stationary phases. Biomedical Chromatography, e6000. https://doi.org/10.1002/bmc.6000 10.1002/bmc.6000 PubMedGoogle Scholar Han, Y., Kou, M., Zhang, H., Qiu, H., & Shi, Y.-P. (2025). Chiral fluorescent carbon dots for tyrosine enantiomers: Discrimination, mechanism and cell imaging. Sensors and Actuators B: Chemical, 422, 136677. https://doi.org/10.1016/j.snb.2024.136677 10.1016/j.snb.2024.136677 CASGoogle Scholar Liu, J.-Z., Chai, X.-Y., Huang, J., Li, R. S., Li, C. M., Ling, J., Cao, Q.-E., & Huang, C. Z. (2024). Chiral assembly of perovskite nanocrystals: Sensitive discrimination of amino acid enantiomers. Analytical Chemistry, 96(10), 4282–4289. https://doi.org/10.1021/acs.analchem.3c05941 10.1021/acs.analchem.3c05941 CASPubMedGoogle Scholar Malik, P., & Bhushan, R. (2018). Development of bovine serum albumin bonded silica as chiral stationary phase and its application in quantitative direct enantiomeric resolution. ACS Organic Process Research & Development, 22(7), 789–795. https://doi.org/10.1021/acs.oprd.8b00065 10.1021/acs.oprd.8b00065 CASWeb of Science®Google Scholar Martens, J., & Bhushan, R. (2014). Purification of enantiomeric mixtures in enantioselective synthesis: Overlooked errors and scientific basis of separation in achiral environment. Helvetica Chimica Acta, 97, 161–187. https://doi.org/10.1002/ijch.201600086 10.1002/hlca.201300392 CASWeb of Science®Google Scholar Wang, X., Xiang, S., Qi, C., Chen, M., Su, X., Yang, J.-C., Tian, J., Feng, H.-T., & Tang, B. Z. (2022). Visualization of enantiorecognition and resolution by chiral AIEgens. ACS Nano, 16(5), 8223–8232. https://doi.org/10.1021/acsnano.2c01981 10.1021/acsnano.2c01981 CASPubMedWeb of Science®Google Scholar Wang, Y., Chen, J.-K., Xiong, L.-X., Wang, B.-J., Xie, S.-M., Zhang, J.-H., & Yuan, L.-M. (2022). Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Analytical Chemistry, 94, 4961–4969. https://doi.org/10.1021/acs.analchem.1c03626 10.1021/acs.analchem.1c03626 CASPubMedWeb of Science®Google Scholar Yuan, C., Wang, Z., Xiong, W., Huang, Z., Lai, Y., Fu, S., Dong, J., Duan, A., Hou, X., Yuan, L.-M., & Cui, Y. (2023). Cyclodextrin incorporation into covalent organic frameworks enables extensive liquid and gas chromatographic enantioseparations. Journal of the American Chemical Society, 145(34), 18956–18967. https://doi.org/10.1021/jacs.3c05973 10.1021/jacs.3c05973 CASPubMedGoogle Scholar Volume0, Issue0e6041 ReferencesRelatedInformation