Prosit-XL: enhanced cross-linked peptide identification by accurate fragment intensity prediction to study protein-protein interactions and protein structures

片段(逻辑) 鉴定(生物学) 计算生物学 化学 生物 计算机科学 生物化学 算法 植物
作者
Mostafa Kalhor,Cemil Can Saylan,Mario Picciani,Lutz Fischer,Falk Schimweg,Joel Lapin,Juri Rappsilber,Mathias Wilhelm
标识
DOI:10.1101/2024.12.15.627797
摘要

Abstract It has been shown that integrating peptide property predictions such as fragment intensity into the scoring process of peptide spectrum match can greatly increase the number of confidently identified peptides compared to using traditional scoring methods. Here, we introduce Prosit-XL, a robust and accurate fragment intensity predictor covering the cleavable (DSSO/DSBU) and non-cleavable cross-linkers (DSS/BS3), achieving high accuracy on various holdout sets with consistent performance on external datasets without fine-tuning. Due to the complex nature of false positives in XL-MS, a novel approach to data-driven rescoring was developed that benefits from Prosit-XL’s predictions while limiting the overestimation of the false discovery rate (FDR). We first evaluated this approach using two ground truth datasets that demonstrate the accurate and precise FDR estimation. Second, we applied Prosit-XL on a proteome-scale dataset, demonstrating an up to ∼3.4-fold improvement in PPI discovery compared to classic approaches. Finally, Prosit-XL was used to increase the coverage and depth of a spatially resolved interactome map of intact human cytomegalovirus virions, leading to the discovery of previously unobserved interactions between human and cytomegalovirus proteins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暴走火箭筒完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
呆呆不瓜完成签到,获得积分10
4秒前
5秒前
5秒前
斯文败类应助酥酥采纳,获得10
5秒前
Lric发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
重要无招发布了新的文献求助10
9秒前
皮皮猫发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
zsy1234完成签到,获得积分10
11秒前
12秒前
哭泣的擎汉完成签到,获得积分10
14秒前
科研通AI5应助优雅的箴采纳,获得10
14秒前
小马甲应助镜子镜采纳,获得10
14秒前
思源应助EricSai采纳,获得10
14秒前
14秒前
浪客完成签到 ,获得积分10
17秒前
阔达碧空发布了新的文献求助10
18秒前
20秒前
20秒前
维克多发布了新的文献求助30
21秒前
Persist6578完成签到 ,获得积分10
21秒前
隐形的妙松应助HJJHJH采纳,获得10
22秒前
NexusExplorer应助HJJHJH采纳,获得10
22秒前
24秒前
万能图书馆应助Miyya采纳,获得10
24秒前
科研通AI5应助真实的馒头采纳,获得30
26秒前
26秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495