A Deep Reinforcement Learning-Based Method for Signal Duration Control at Intersections with Asymmetric Traffic Flows

流量(计算机网络) 交叉口(航空) 强化学习 信号(编程语言) 计算机科学 人工神经网络 控制理论(社会学) 排队 实时计算 模拟 人工智能 工程类 控制(管理) 计算机网络 运输工程 程序设计语言
作者
Ge Songhao
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402207
摘要

At the intersection with asymmetric traffic flow, a single neural network or other control methods cannot make a choice in time to ensure that the intersection with a large traffic flow and the intersection with a long queue length can obtain more traffic time. In order to solve this problem, a signal length control method for asymmetric traffic flow intersections based on deep reinforcement learning is proposed. Using deep Q-learning, the traffic signal control problem is transformed into a reinforcement learning problem. The state of traffic intersection is defined as traffic cycle time, asymmetric traffic flow parameters, asymmetric traffic flow parameters, the green signal ratio of the signal, and the control action of a traffic signal is defined as changing the phase and duration of the signal. Through the deep Q-learning model, a neural network model is trained to predict the long-term cumulative return (i.e., Q value) of each action under different conditions, that is, asymmetric traffic flow, and select the optimal control action according to the Q value, so as to realize the signal light duration control of asymmetric traffic flow intersections. Through experimental verification, when the discount factor of the model is 0.5, the learning speed and stability of the optimal agent can be obtained, which effectively reduces the occurrence of traffic congestion and greatly improves the traffic safety of vehicles, which is of great significance for improving urban traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助苦瓜不苦采纳,获得10
刚刚
刚刚
spirit 雪发布了新的文献求助10
1秒前
1秒前
1秒前
yar应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
罗_应助科研通管家采纳,获得10
1秒前
tang应助科研通管家采纳,获得10
1秒前
huo应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
亭语完成签到 ,获得积分0
2秒前
yar应助科研通管家采纳,获得10
2秒前
罗_应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
HR112应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
松大宝完成签到,获得积分10
5秒前
温暖寻雪发布了新的文献求助10
5秒前
5秒前
叶远望发布了新的文献求助30
5秒前
孙小雨完成签到,获得积分10
6秒前
7秒前
美琦完成签到,获得积分10
7秒前
8秒前
9秒前
子车雁开完成签到,获得积分10
9秒前
ming43发布了新的文献求助10
9秒前
柏无极完成签到,获得积分20
10秒前
CC发布了新的文献求助20
10秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312499
求助须知:如何正确求助?哪些是违规求助? 2945157
关于积分的说明 8523210
捐赠科研通 2620967
什么是DOI,文献DOI怎么找? 1433156
科研通“疑难数据库(出版商)”最低求助积分说明 664898
邀请新用户注册赠送积分活动 650255