亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Reinforcement Learning-Based Method for Signal Duration Control at Intersections with Asymmetric Traffic Flows

流量(计算机网络) 交叉口(航空) 强化学习 信号(编程语言) 计算机科学 人工神经网络 控制理论(社会学) 排队 实时计算 模拟 人工智能 工程类 控制(管理) 计算机网络 运输工程 程序设计语言
作者
Ge Songhao
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402207
摘要

At the intersection with asymmetric traffic flow, a single neural network or other control methods cannot make a choice in time to ensure that the intersection with a large traffic flow and the intersection with a long queue length can obtain more traffic time. In order to solve this problem, a signal length control method for asymmetric traffic flow intersections based on deep reinforcement learning is proposed. Using deep Q-learning, the traffic signal control problem is transformed into a reinforcement learning problem. The state of traffic intersection is defined as traffic cycle time, asymmetric traffic flow parameters, asymmetric traffic flow parameters, the green signal ratio of the signal, and the control action of a traffic signal is defined as changing the phase and duration of the signal. Through the deep Q-learning model, a neural network model is trained to predict the long-term cumulative return (i.e., Q value) of each action under different conditions, that is, asymmetric traffic flow, and select the optimal control action according to the Q value, so as to realize the signal light duration control of asymmetric traffic flow intersections. Through experimental verification, when the discount factor of the model is 0.5, the learning speed and stability of the optimal agent can be obtained, which effectively reduces the occurrence of traffic congestion and greatly improves the traffic safety of vehicles, which is of great significance for improving urban traffic conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lyncee发布了新的文献求助50
8秒前
doc.wei发布了新的文献求助10
9秒前
JamesPei应助张123采纳,获得30
10秒前
19秒前
张123完成签到,获得积分20
20秒前
张123发布了新的文献求助30
24秒前
CodeCraft应助catherine采纳,获得10
28秒前
37秒前
40秒前
李健的小迷弟应助余婷采纳,获得10
40秒前
40秒前
等待若山发布了新的文献求助10
41秒前
doc.wei完成签到 ,获得积分20
45秒前
waomi发布了新的文献求助10
47秒前
CipherSage应助咕噜咕噜采纳,获得30
50秒前
小奋青完成签到 ,获得积分10
51秒前
52秒前
余婷发布了新的文献求助10
58秒前
1分钟前
catherine发布了新的文献求助10
1分钟前
田様应助杨柳9203采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
2分钟前
苹果小玉发布了新的文献求助10
2分钟前
2分钟前
fan发布了新的文献求助30
2分钟前
2分钟前
杨柳9203发布了新的文献求助10
2分钟前
2分钟前
2分钟前
bu拿下PHD绝不回头完成签到,获得积分10
2分钟前
3分钟前
3分钟前
李静完成签到,获得积分10
3分钟前
3分钟前
YY88687321发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543167
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611117
捐赠科研通 4570598
什么是DOI,文献DOI怎么找? 2505827
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454407