A Deep Reinforcement Learning-Based Method for Signal Duration Control at Intersections with Asymmetric Traffic Flows

流量(计算机网络) 交叉口(航空) 强化学习 信号(编程语言) 计算机科学 人工神经网络 控制理论(社会学) 排队 实时计算 模拟 人工智能 工程类 控制(管理) 计算机网络 运输工程 程序设计语言
作者
Ge Songhao
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402207
摘要

At the intersection with asymmetric traffic flow, a single neural network or other control methods cannot make a choice in time to ensure that the intersection with a large traffic flow and the intersection with a long queue length can obtain more traffic time. In order to solve this problem, a signal length control method for asymmetric traffic flow intersections based on deep reinforcement learning is proposed. Using deep Q-learning, the traffic signal control problem is transformed into a reinforcement learning problem. The state of traffic intersection is defined as traffic cycle time, asymmetric traffic flow parameters, asymmetric traffic flow parameters, the green signal ratio of the signal, and the control action of a traffic signal is defined as changing the phase and duration of the signal. Through the deep Q-learning model, a neural network model is trained to predict the long-term cumulative return (i.e., Q value) of each action under different conditions, that is, asymmetric traffic flow, and select the optimal control action according to the Q value, so as to realize the signal light duration control of asymmetric traffic flow intersections. Through experimental verification, when the discount factor of the model is 0.5, the learning speed and stability of the optimal agent can be obtained, which effectively reduces the occurrence of traffic congestion and greatly improves the traffic safety of vehicles, which is of great significance for improving urban traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助SCI采纳,获得10
1秒前
老疯智发布了新的文献求助10
1秒前
sweetbearm应助通~采纳,获得10
1秒前
神凰完成签到,获得积分10
1秒前
Z小姐发布了新的文献求助10
2秒前
NexusExplorer应助白泽采纳,获得10
2秒前
3秒前
3秒前
火星上妙梦完成签到 ,获得积分10
3秒前
赘婿应助mayungui采纳,获得10
3秒前
贾不可发布了新的文献求助10
4秒前
英俊梦槐发布了新的文献求助30
4秒前
Xu完成签到,获得积分10
5秒前
5秒前
秀丽千山完成签到,获得积分10
5秒前
6秒前
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
沧海泪发布了新的文献求助10
8秒前
小胡先森应助凤凰山采纳,获得10
8秒前
一一完成签到,获得积分10
8秒前
惠惠发布了新的文献求助10
8秒前
shotgod完成签到,获得积分20
9秒前
科研通AI5应助蕾子采纳,获得10
9秒前
happy杨完成签到 ,获得积分10
9秒前
lichaoyes发布了新的文献求助10
9秒前
9秒前
Owen应助通~采纳,获得10
9秒前
封闭货车发布了新的文献求助10
10秒前
10秒前
www发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
shotgod发布了新的文献求助10
12秒前
ling玲完成签到,获得积分10
12秒前
奔奔发布了新的文献求助10
12秒前
SweepingMonk应助虚心盼晴采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794