Takeover performance prediction model considering cognitive load: analysis of subjective and objective factors

认知 人为因素与人体工程学 毒物控制 职业安全与健康 计算机科学 伤害预防 工程类 应用心理学 心理学 医学 环境卫生 病理 神经科学
作者
Huimin Ge,Peggy Wu,Lei Dong,Ning OuYang,Jie Chen,Jiajia Chen
出处
期刊:Traffic Injury Prevention [Taylor & Francis]
卷期号:: 1-9
标识
DOI:10.1080/15389588.2024.2447574
摘要

This paper aims to explore the effects of different cognitive loads on driver eye movement and ECG, and construct the BP (Back Propagation) neural network prediction model of driver takeover performance optimized by genetic algorithm (GA). In this paper, the simulation software UC-win/road was used to construct the highway driving scene, and the N-back tasks of different difficulty were selected to set different levels of cognitive load for testing. Using the driver eye movement data and ECG data collected during the test, combined with the NASA-TLX load scale collected after the driving simulation test, the subjective and objective data were analyzed. We determined the cognitive load level of drivers under different cognitive tasks based on the K-means clustering algorithm. We selected the significant objective indicators that affect the cognitive load of drivers, constructed a takeover performance prediction model based on BP neural network, and verified the effectiveness. Compared with the BP prediction model, the GA-BP prediction model established in this paper has different degrees of improvement in each evaluation index under different time window lengths. Among them, the improvement effect is the most obvious under the length of 10s time window, the accuracy rate is increased by 5.51%, the recall rate is increased by 7.08%, the accuracy rate is increased by 6.19%, and the F1 score is increased by 9.71%. The findings indicate that as the difficulty of the cognitive sub-task escalates, the driver's tension increases and the cognitive load increases. The GA-BP prediction model established in this paper has higher prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大椒完成签到 ,获得积分10
1秒前
1秒前
pjm完成签到,获得积分20
1秒前
2秒前
张书源完成签到 ,获得积分10
2秒前
鎏祈完成签到 ,获得积分10
2秒前
烟花应助大白采纳,获得10
4秒前
Dejavue发布了新的文献求助10
6秒前
catch完成签到,获得积分10
6秒前
Zhai发布了新的文献求助10
7秒前
9秒前
这次会赢吗完成签到,获得积分10
9秒前
kirto完成签到,获得积分10
11秒前
an完成签到,获得积分10
11秒前
踏实十八发布了新的文献求助10
11秒前
刘梓应助眼睛大天思采纳,获得20
11秒前
努力加油煤老八完成签到 ,获得积分0
11秒前
刘佳完成签到 ,获得积分10
13秒前
sinlar发布了新的文献求助10
13秒前
Dejavue完成签到,获得积分10
14秒前
14秒前
SciGPT应助七七采纳,获得10
16秒前
张六六发布了新的文献求助10
16秒前
YXYYXY完成签到,获得积分10
17秒前
JamesPei应助赵一采纳,获得10
18秒前
酷波er应助crybaby采纳,获得10
18秒前
19秒前
小二郎应助LM采纳,获得10
19秒前
孤独的芒果完成签到,获得积分10
20秒前
20秒前
华仔应助田小冉采纳,获得10
20秒前
20秒前
苏苏完成签到 ,获得积分10
21秒前
21秒前
21秒前
想看不眠日记完成签到,获得积分10
22秒前
小恐龙完成签到,获得积分10
22秒前
xueyuanli完成签到,获得积分10
24秒前
麦客完成签到,获得积分10
24秒前
叨叨发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641