Takeover performance prediction model considering cognitive load: analysis of subjective and objective factors

认知 人为因素与人体工程学 毒物控制 职业安全与健康 计算机科学 伤害预防 工程类 应用心理学 心理学 医学 环境卫生 病理 神经科学
作者
Huimin Ge,Peggy Wu,Lei Dong,Ning OuYang,Jie Chen,Jiajia Chen
出处
期刊:Traffic Injury Prevention [Informa]
卷期号:: 1-9
标识
DOI:10.1080/15389588.2024.2447574
摘要

This paper aims to explore the effects of different cognitive loads on driver eye movement and ECG, and construct the BP (Back Propagation) neural network prediction model of driver takeover performance optimized by genetic algorithm (GA). In this paper, the simulation software UC-win/road was used to construct the highway driving scene, and the N-back tasks of different difficulty were selected to set different levels of cognitive load for testing. Using the driver eye movement data and ECG data collected during the test, combined with the NASA-TLX load scale collected after the driving simulation test, the subjective and objective data were analyzed. We determined the cognitive load level of drivers under different cognitive tasks based on the K-means clustering algorithm. We selected the significant objective indicators that affect the cognitive load of drivers, constructed a takeover performance prediction model based on BP neural network, and verified the effectiveness. Compared with the BP prediction model, the GA-BP prediction model established in this paper has different degrees of improvement in each evaluation index under different time window lengths. Among them, the improvement effect is the most obvious under the length of 10s time window, the accuracy rate is increased by 5.51%, the recall rate is increased by 7.08%, the accuracy rate is increased by 6.19%, and the F1 score is increased by 9.71%. The findings indicate that as the difficulty of the cognitive sub-task escalates, the driver's tension increases and the cognitive load increases. The GA-BP prediction model established in this paper has higher prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周思雨完成签到,获得积分10
1秒前
2秒前
XU完成签到,获得积分10
3秒前
tqy发布了新的文献求助10
3秒前
EN完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
树藤完成签到,获得积分10
5秒前
5秒前
言字午发布了新的文献求助10
5秒前
5秒前
飘逸的麦片完成签到,获得积分10
6秒前
一万朵蝴蝶完成签到,获得积分10
6秒前
7秒前
7秒前
JamesPei应助tqy采纳,获得10
8秒前
8秒前
wrx发布了新的文献求助10
8秒前
Bruial发布了新的文献求助10
8秒前
慕青应助言字午采纳,获得10
9秒前
ysh完成签到 ,获得积分10
9秒前
theScorpions完成签到 ,获得积分10
9秒前
细胞发布了新的文献求助10
10秒前
李爱国应助谷捣猫宁采纳,获得10
10秒前
11秒前
没有银发布了新的文献求助10
11秒前
11秒前
xibei完成签到 ,获得积分10
12秒前
王豆豆发布了新的文献求助10
13秒前
辇道增七完成签到,获得积分10
13秒前
andxx完成签到,获得积分10
13秒前
天天快乐应助壮观可仁采纳,获得10
14秒前
李梦瑾发布了新的文献求助10
14秒前
15秒前
tqy完成签到,获得积分10
16秒前
香蕉觅云应助OvO采纳,获得10
18秒前
Pattis完成签到 ,获得积分10
19秒前
六七关注了科研通微信公众号
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461869
求助须知:如何正确求助?哪些是违规求助? 3055566
关于积分的说明 9048367
捐赠科研通 2745226
什么是DOI,文献DOI怎么找? 1506116
科研通“疑难数据库(出版商)”最低求助积分说明 695985
邀请新用户注册赠送积分活动 695510