High-Efficiency Capture and Proteomic Analysis of Plasma-Derived Extracellular Vesicles through Affinity Purification

化学 细胞外小泡 小泡 等离子体 细胞外 色谱法 生物物理学 生物化学 细胞生物学 物理 量子力学 生物
作者
Guiyuan Zhang,Chunlei Ma,Le Ma,Wei Dong,Yanan Wu,Ying Li,Zhen Xu,Yufeng Liu,Yuhan Cai,Evan Y. Yu,Yefei Zhu,Hao Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c04269
摘要

Plasma-derived extracellular vesicles (EVs) are promising sources of biomarkers. It is still a challenge to isolate EVs from a small amount of human plasma for downstream proteomic analysis. The isolation process is hindered by contamination with high-abundance blood proteins and lipoprotein particles, which adversely impact proteomic analyses. Moreover, although EV immune-isolation via magnetic beads often integrates with flow sorting and Western blotting (WB), it lacks compatibility with nanoparticle tracking analysis (NTA) and proteomic analysis. To address these issues, we have developed a functional affinity magnetic bead, EVlent (Extracellular Vesicles isoLated Efficiently, Naturally, and Totally), enabling the rapid and efficient isolation of EVs from plasma. By optimizing the quantities of magnetic beads and plasma used, we characterized the isolated EVs through WB, NTA, and transmission electron microscopy (TEM), showing the successful isolation of EVs from plasma. Proteomic analysis of these EVs identified over 2000 proteins and 15,000 peptides from 100 μL of plasma and nearly 1000 proteins from trace samples as small as 5 μL. Additionally, this isolation method significantly reduced contaminants, including plasma proteins and lipoproteins, compared to ultracentrifugation. Finally, we applied this strategy to plasma samples of healthy individuals and those with Parkinson's disease, identifying four potential biomarkers that provide promising guidance for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小何医生发布了新的文献求助10
1秒前
1秒前
烂漫的中蓝完成签到,获得积分10
1秒前
专注的可乐完成签到,获得积分10
2秒前
2秒前
洋子发布了新的文献求助10
2秒前
2秒前
糊涂涂发布了新的文献求助10
5秒前
6秒前
6秒前
YHF2完成签到,获得积分10
6秒前
852应助追佩奇十条街采纳,获得10
7秒前
顺心的水之完成签到,获得积分10
8秒前
大昭发布了新的文献求助30
8秒前
kiki完成签到,获得积分10
8秒前
研友_VZG7GZ应助qyzhu采纳,获得10
8秒前
无限若云完成签到,获得积分10
8秒前
8秒前
xunxunmimi完成签到,获得积分10
8秒前
小何医生完成签到,获得积分10
9秒前
9秒前
comz完成签到,获得积分10
10秒前
木子完成签到,获得积分10
11秒前
英俊的铭应助贪玩蓝月采纳,获得10
12秒前
12秒前
努力学习发布了新的文献求助10
12秒前
Akim应助牙牙采纳,获得10
13秒前
13秒前
13秒前
Lyric_发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
科研凯凯发布了新的文献求助10
17秒前
大昭完成签到,获得积分10
18秒前
EasyNan应助糊涂涂采纳,获得10
19秒前
20秒前
灼才完成签到,获得积分10
21秒前
科研通AI5应助777采纳,获得10
22秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427