Predicting c-KIT Inhibitor Efficacy in Patient-Derived Models of Sinonasal Mucosal Melanomas through Integrated Histogram Analysis of Whole-Tumor DKI, IVIM, and DCE-MRI

盒内非相干运动 医学 峰度 伊马替尼 逻辑回归 磁共振成像 核医学 预测值 直方图 放射科 磁共振弥散成像 内科学 人工智能 数学 统计 髓系白血病 计算机科学 图像(数学)
作者
Cong Wang,X. Y. Niu,Tianyi Xia,Peng Wang,Yuzhe Wang,Zhongshuai Zhang,JianYuan Zhang,Shenghong Ju,Zebin Xiao
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/1078-0432.ccr-24-3765
摘要

Abstract Purpose: To evaluate whole-tumor histogram analysis of diffusion kurtosis imaging (DKI), intravoxel incoherent motion (IVIM), and dynamic contrast-enhanced MRI (DCE-MRI), in predicting the efficacy of imatinib, a c-KIT inhibitor, for treating patient derived models derived from sinonasal mucosal melanomas (MMs). Experimental Design: This study included 38 patients with histologically confirmed sinonasal MM, who underwent DKI, IVIM, and DCE-MRI. Patient-derived tumor xenograft (PDX) models and precision-cut tumor slices (PCTS) were established to evaluate tumor response to imatinib. Whole-tumor histogram analysis was conducted on imaging parameters, and logistic regression models were applied to determine the predictive value of these metrics in differentiating responders from non-responders. Results: Among the 38 sinonasal MM patients, 12 were classified as responders and 26 as non-responders based on PDX and PCTS model responses to imatinib. The DKI model revealed significant differences in mean, median, P10, and P90 values of Dk and K between responders and non-responders (P < 0.05). The IVIM model indicated significant differences in P10 and mean values of D, with kurtosis f being a strong predictor. The DCE-MRI model, using the P90 Ktrans metric, demonstrated robust predictive performance, achieving an AUC of 0.89, with 80.77% specificity and 91.67% sensitivity. The combined logistic model integrating DKI, IVIM, and DCE-MRI metrics produced the highest predictive accuracy, with an AUC of 0.90. Conclusions: Whole-tumor histogram analysis of DKI, IVIM, and DCE-MRI offers a non-invasive method for predicting the efficacy of c-KIT inhibitors in sinonasal MMs, presenting valuable implications for guiding targeted treatment in this rare cancer type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一蓑烟雨任平生完成签到,获得积分0
刚刚
刚刚
zhangmengru发布了新的文献求助30
刚刚
知胜zjl发布了新的文献求助10
刚刚
刚刚
烟花应助大气的念蕾采纳,获得10
刚刚
1秒前
NexusExplorer应助CC采纳,获得30
1秒前
雨木木完成签到,获得积分10
3秒前
烟花应助aganer采纳,获得10
3秒前
3秒前
CipherSage应助余姚采纳,获得10
3秒前
桐桐应助踏实的便当采纳,获得10
4秒前
狂野的钻石完成签到 ,获得积分20
4秒前
4秒前
Akin完成签到,获得积分10
4秒前
烟花应助深年采纳,获得10
4秒前
迟大猫应助lixiaofan采纳,获得10
5秒前
6秒前
共享精神应助dou采纳,获得10
6秒前
6秒前
平淡盼旋发布了新的文献求助10
6秒前
大个应助婷婷采纳,获得10
6秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
Hover完成签到 ,获得积分10
8秒前
9秒前
深情安青应助诚心青曼采纳,获得10
9秒前
9秒前
10秒前
啦啦啦完成签到 ,获得积分10
10秒前
小sl完成签到,获得积分10
11秒前
YC完成签到,获得积分10
11秒前
专注的问筠完成签到,获得积分10
11秒前
今后应助django采纳,获得10
11秒前
11秒前
Owen应助狂野悟空采纳,获得10
12秒前
12秒前
爆米花应助沐辰辰采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525771
求助须知:如何正确求助?哪些是违规求助? 3106374
关于积分的说明 9279758
捐赠科研通 2803927
什么是DOI,文献DOI怎么找? 1539092
邀请新用户注册赠送积分活动 716407
科研通“疑难数据库(出版商)”最低求助积分说明 709449