Competitive overlap as a signal in expert partner choice: Evidence from patent law firm selection

选择(遗传算法) 专利法 业务 经济 产业组织 法律与经济学 法学 知识产权 计算机科学 人工智能 政治学
作者
Geoffrey Borchhardt,Balázs Kovács,Michelle Rogan
出处
期刊:Strategic Management Journal [Wiley]
标识
DOI:10.1002/smj.3700
摘要

Abstract Research Summary In market networks, firms regularly seek partners with needed expertise, but these partners often work with the firms' competitors. How such second‐order competitive overlap affects partner selection is unclear. Prior theory assumes firms view networks as “pipes” and emphasizes flows of competitor information via the shared partner as key in partner selection. We propose that firms also view networks as “prisms” and use competitive overlap as a signal of a potential partner's expertise. Hence, firms may prefer partners with competitive overlap. We find support for our claims in the patent law firm selection context. Furthermore, higher competitive overlap leads to slower patent acceptance but results in broader patents, implying that the competitive overlap expertise signal reduces search costs without significant performance loss. Managerial Summary When selecting expert partners like law firms or consultants, some companies may consider avoiding firms that also serve their competitor. However, when little is known about potential partners, this “competitive overlap” might be a way to assess their quality. We found that firms are more likely to choose patent law firms who work with their competitors. This occurs because a competitor's choice signals that partner's expertise. Companies rely on this signal most when they lack direct experience with potential partners or when entering new technological domains. While working with partners who serve competitors might slightly increase processing times, it can increase patent protection without compromising overall performance. These findings suggest that avoiding partners based solely on competitive overlap may limit access to valuable expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡不卡不发布了新的文献求助10
1秒前
打打应助小萝卜采纳,获得10
1秒前
2秒前
3秒前
科研通AI6应助小白采纳,获得10
3秒前
7秒前
水果小王子完成签到 ,获得积分10
7秒前
迟梦发布了新的文献求助10
8秒前
徐安鹏完成签到,获得积分10
9秒前
zhenghang完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
自渡完成签到,获得积分20
11秒前
12秒前
12秒前
stephanie_han完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
小萝卜发布了新的文献求助10
16秒前
16秒前
FLY完成签到,获得积分10
16秒前
WTT完成签到,获得积分20
16秒前
sir完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
kk驳回了大模型应助
19秒前
20秒前
赘婿应助迟梦采纳,获得10
20秒前
20秒前
夜雨微眠发布了新的文献求助10
20秒前
21秒前
鱼选发布了新的文献求助10
21秒前
科研通AI6应助weidandan采纳,获得10
22秒前
22秒前
顾矜应助加菲丰丰采纳,获得10
22秒前
24秒前
Shan完成签到 ,获得积分10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701