Competitive overlap as a signal in expert partner choice: Evidence from patent law firm selection

选择(遗传算法) 专利法 业务 经济 产业组织 法律与经济学 法学 知识产权 计算机科学 人工智能 政治学
作者
Geoffrey Borchhardt,Balázs Kovács,Michelle Rogan
出处
期刊:Strategic Management Journal [Wiley]
标识
DOI:10.1002/smj.3700
摘要

Abstract Research Summary In market networks, firms regularly seek partners with needed expertise, but these partners often work with the firms' competitors. How such second‐order competitive overlap affects partner selection is unclear. Prior theory assumes firms view networks as “pipes” and emphasizes flows of competitor information via the shared partner as key in partner selection. We propose that firms also view networks as “prisms” and use competitive overlap as a signal of a potential partner's expertise. Hence, firms may prefer partners with competitive overlap. We find support for our claims in the patent law firm selection context. Furthermore, higher competitive overlap leads to slower patent acceptance but results in broader patents, implying that the competitive overlap expertise signal reduces search costs without significant performance loss. Managerial Summary When selecting expert partners like law firms or consultants, some companies may consider avoiding firms that also serve their competitor. However, when little is known about potential partners, this “competitive overlap” might be a way to assess their quality. We found that firms are more likely to choose patent law firms who work with their competitors. This occurs because a competitor's choice signals that partner's expertise. Companies rely on this signal most when they lack direct experience with potential partners or when entering new technological domains. While working with partners who serve competitors might slightly increase processing times, it can increase patent protection without compromising overall performance. These findings suggest that avoiding partners based solely on competitive overlap may limit access to valuable expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
011235813完成签到,获得积分10
刚刚
殷女士发布了新的文献求助20
1秒前
田様应助ww采纳,获得30
1秒前
Barton完成签到,获得积分10
1秒前
劲秉应助桃博采纳,获得20
1秒前
1秒前
香蕉觅云应助zanzan采纳,获得10
1秒前
2秒前
99完成签到,获得积分10
2秒前
嘟嘟嘟嘟完成签到 ,获得积分10
2秒前
李健应助江城子采纳,获得10
2秒前
2秒前
大模型应助黄金灼采纳,获得10
2秒前
络桵发布了新的文献求助10
3秒前
3秒前
赘婿应助娃哈哈采纳,获得10
3秒前
CHAIZH发布了新的文献求助10
3秒前
5秒前
在水一方应助沉静妙之采纳,获得10
5秒前
6秒前
6秒前
7秒前
mss完成签到,获得积分20
7秒前
tana98906发布了新的文献求助10
7秒前
7秒前
李健的粉丝团团长应助GD88采纳,获得10
7秒前
7秒前
man完成签到,获得积分10
8秒前
健忘发箍发布了新的文献求助10
8秒前
8秒前
Yurinn发布了新的文献求助10
8秒前
左左发布了新的文献求助10
9秒前
晨曦暮雪完成签到,获得积分10
9秒前
10秒前
刘家翔发布了新的文献求助10
10秒前
苏钰发布了新的文献求助10
10秒前
QIQI完成签到,获得积分10
10秒前
黎明锦葵发布了新的文献求助10
11秒前
18520838753发布了新的文献求助10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468985
求助须知:如何正确求助?哪些是违规求助? 3062016
关于积分的说明 9077763
捐赠科研通 2752446
什么是DOI,文献DOI怎么找? 1510421
科研通“疑难数据库(出版商)”最低求助积分说明 697807
邀请新用户注册赠送积分活动 697759