清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Impact of Combined Deep Learning Image Reconstruction and Metal Artifact Reduction Algorithm on CT Image Quality in Different Scanning Conditions for Maxillofacial Region with Metal Implants: A Phantom Study

成像体模 图像质量 工件(错误) 还原(数学) 人工智能 图像(数学) 迭代重建 计算机视觉 材料科学 计算机科学 生物医学工程 医学 核医学 数学 几何学
作者
Gongxin Yang,Haowei Wang,Ling Liu,QY Ma,Huimin Shi,Ying Yuan
标识
DOI:10.1007/s10278-024-01287-4
摘要

This study aims to investigate the impact of combining deep learning image reconstruction (DLIR) and metal artifacts reduction (MAR) algorithms on the quality of CT images with metal implants under different scanning conditions. Four images of the maxillofacial region in pigs were taken using different metal implants for evaluation. The scans were conducted at three different dose levels (CTDIvol: 20/10/5 mGy). The images were reconstructed using three different methods: filtered back projection (FBP), adaptive statistical iterative reconstruction with Veo at a 50% level (AV50), and DLIR at three levels (low, medium, and high). Regions of interest (ROIs) were identified in various tissues (near/far/reference fat, muscle, bone) both with and without metal implants and artifacts. Parameters such as standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and metal artifact index (MAI) were calculated. Additionally, two experienced radiologists evaluated the subjective image quality (IQ) using a 5-point Likert scale. (1) Both observers rated MAR generated significantly lower artifact scores than non-MAR in all types of tissues (P < 0.01), except for the far shadow and bloom in bone (phantoms 1, 3, 4) and the far bloom in muscle (phantom 3) without significant differences (P = 1.0). (2) Under the same scanning condition, DLIR at three levels produced a smaller SD than those of FBP and AV50 (P < 0.05). (3) Compared to FBP and AV50, DLIR denoted a better reduction of MAI and improvement of SNR and CNR (P < 0.05) for most tissues between the four phantoms. (4) Subjective overall IQ was superior with the increasement of DLIR level (P < 0.05) and both observers agreed that DLIR produced better artifact reductions compared with FBP and AV50. The combination of DLIR and MAR algorithms can enhance image quality, significantly reduce metal artifacts, and offer high clinical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NicoLi应助雪山飞龙采纳,获得10
9秒前
10秒前
11秒前
krajicek发布了新的文献求助10
17秒前
NicoLi应助雪山飞龙采纳,获得10
39秒前
43秒前
刘茂甫应助zhang20082418采纳,获得10
50秒前
浚稚完成签到 ,获得积分10
55秒前
zhang20082418完成签到,获得积分10
1分钟前
oucedv发布了新的文献求助10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
Only完成签到 ,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
3分钟前
zhangguo完成签到 ,获得积分10
3分钟前
Cosmosurfer完成签到,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
程程发布了新的文献求助10
4分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
5分钟前
6分钟前
刘丰完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
白华苍松发布了新的文献求助10
6分钟前
6分钟前
gang发布了新的文献求助10
6分钟前
拓跋雨梅完成签到 ,获得积分0
7分钟前
7分钟前
思源完成签到 ,获得积分10
7分钟前
蔡从安发布了新的文献求助10
7分钟前
7分钟前
蔡从安发布了新的文献求助10
7分钟前
迟大猫应助蔡从安采纳,获得10
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890