Impact of Combined Deep Learning Image Reconstruction and Metal Artifact Reduction Algorithm on CT Image Quality in Different Scanning Conditions for Maxillofacial Region with Metal Implants: A Phantom Study

成像体模 图像质量 工件(错误) 还原(数学) 人工智能 图像(数学) 迭代重建 计算机视觉 材料科学 计算机科学 生物医学工程 医学 核医学 数学 几何学
作者
Gongxin Yang,Haowei Wang,Ling Liu,QY Ma,Huimin Shi,Ying Yuan
标识
DOI:10.1007/s10278-024-01287-4
摘要

This study aims to investigate the impact of combining deep learning image reconstruction (DLIR) and metal artifacts reduction (MAR) algorithms on the quality of CT images with metal implants under different scanning conditions. Four images of the maxillofacial region in pigs were taken using different metal implants for evaluation. The scans were conducted at three different dose levels (CTDIvol: 20/10/5 mGy). The images were reconstructed using three different methods: filtered back projection (FBP), adaptive statistical iterative reconstruction with Veo at a 50% level (AV50), and DLIR at three levels (low, medium, and high). Regions of interest (ROIs) were identified in various tissues (near/far/reference fat, muscle, bone) both with and without metal implants and artifacts. Parameters such as standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and metal artifact index (MAI) were calculated. Additionally, two experienced radiologists evaluated the subjective image quality (IQ) using a 5-point Likert scale. (1) Both observers rated MAR generated significantly lower artifact scores than non-MAR in all types of tissues (P < 0.01), except for the far shadow and bloom in bone (phantoms 1, 3, 4) and the far bloom in muscle (phantom 3) without significant differences (P = 1.0). (2) Under the same scanning condition, DLIR at three levels produced a smaller SD than those of FBP and AV50 (P < 0.05). (3) Compared to FBP and AV50, DLIR denoted a better reduction of MAI and improvement of SNR and CNR (P < 0.05) for most tissues between the four phantoms. (4) Subjective overall IQ was superior with the increasement of DLIR level (P < 0.05) and both observers agreed that DLIR produced better artifact reductions compared with FBP and AV50. The combination of DLIR and MAR algorithms can enhance image quality, significantly reduce metal artifacts, and offer high clinical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助陶l采纳,获得10
2秒前
4秒前
5秒前
彭于晏应助文人青采纳,获得10
7秒前
爱库珀应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
聪明凡之应助科研通管家采纳,获得10
9秒前
9秒前
eric888应助科研通管家采纳,获得10
9秒前
王w应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
一一应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
Orange应助kelexh采纳,获得10
11秒前
caoruyuan发布了新的文献求助10
11秒前
身处人海完成签到,获得积分10
12秒前
dfghjkl完成签到,获得积分10
12秒前
杨好圆完成签到,获得积分10
12秒前
自由妙竹完成签到 ,获得积分10
15秒前
evvj发布了新的文献求助10
15秒前
mzrrong完成签到 ,获得积分10
15秒前
香蕉觅云应助西西采纳,获得10
15秒前
dfghjkl发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
lxj发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851