已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of Combined Deep Learning Image Reconstruction and Metal Artifact Reduction Algorithm on CT Image Quality in Different Scanning Conditions for Maxillofacial Region with Metal Implants: A Phantom Study

成像体模 图像质量 工件(错误) 还原(数学) 人工智能 图像(数学) 迭代重建 计算机视觉 材料科学 计算机科学 生物医学工程 医学 核医学 数学 几何学
作者
Gongxin Yang,Haowei Wang,Ling Liu,QY Ma,Huimin Shi,Ying Yuan
标识
DOI:10.1007/s10278-024-01287-4
摘要

This study aims to investigate the impact of combining deep learning image reconstruction (DLIR) and metal artifacts reduction (MAR) algorithms on the quality of CT images with metal implants under different scanning conditions. Four images of the maxillofacial region in pigs were taken using different metal implants for evaluation. The scans were conducted at three different dose levels (CTDIvol: 20/10/5 mGy). The images were reconstructed using three different methods: filtered back projection (FBP), adaptive statistical iterative reconstruction with Veo at a 50% level (AV50), and DLIR at three levels (low, medium, and high). Regions of interest (ROIs) were identified in various tissues (near/far/reference fat, muscle, bone) both with and without metal implants and artifacts. Parameters such as standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and metal artifact index (MAI) were calculated. Additionally, two experienced radiologists evaluated the subjective image quality (IQ) using a 5-point Likert scale. (1) Both observers rated MAR generated significantly lower artifact scores than non-MAR in all types of tissues (P < 0.01), except for the far shadow and bloom in bone (phantoms 1, 3, 4) and the far bloom in muscle (phantom 3) without significant differences (P = 1.0). (2) Under the same scanning condition, DLIR at three levels produced a smaller SD than those of FBP and AV50 (P < 0.05). (3) Compared to FBP and AV50, DLIR denoted a better reduction of MAI and improvement of SNR and CNR (P < 0.05) for most tissues between the four phantoms. (4) Subjective overall IQ was superior with the increasement of DLIR level (P < 0.05) and both observers agreed that DLIR produced better artifact reductions compared with FBP and AV50. The combination of DLIR and MAR algorithms can enhance image quality, significantly reduce metal artifacts, and offer high clinical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
恒心捏发布了新的文献求助10
1秒前
小虎牙发布了新的文献求助10
2秒前
再学一分钟完成签到,获得积分10
5秒前
6秒前
SciGPT应助江蹇采纳,获得10
9秒前
9秒前
遇上就这样吧完成签到,获得积分0
9秒前
tingting发布了新的文献求助10
10秒前
淡然以柳完成签到 ,获得积分10
13秒前
空空伊完成签到 ,获得积分10
13秒前
13秒前
张涛完成签到 ,获得积分10
14秒前
小虎牙发布了新的文献求助30
14秒前
14秒前
洁净沛蓝发布了新的文献求助10
14秒前
15秒前
可爱的函函应助啊呆哦采纳,获得10
16秒前
17秒前
可爱的函函应助虚心碧采纳,获得10
20秒前
GIA发布了新的文献求助10
20秒前
kevin完成签到 ,获得积分10
22秒前
24秒前
25秒前
25秒前
yipmyonphu完成签到,获得积分10
27秒前
Omni完成签到,获得积分10
28秒前
曾予嘉完成签到 ,获得积分10
29秒前
陈志亨发布了新的文献求助10
29秒前
恋苳发布了新的文献求助10
29秒前
18298859129完成签到,获得积分10
29秒前
小虎牙发布了新的文献求助10
30秒前
啊呆哦发布了新的文献求助10
31秒前
aaaaaYue完成签到,获得积分20
35秒前
37秒前
洁净沛蓝完成签到,获得积分10
39秒前
小虎牙发布了新的文献求助10
40秒前
Akim应助空空伊采纳,获得10
40秒前
GIA完成签到,获得积分10
43秒前
aaaaaYue发布了新的文献求助10
43秒前
你嵙这个期刊没买完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497941
求助须知:如何正确求助?哪些是违规求助? 4595361
关于积分的说明 14448923
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481322
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438200