Impact of Combined Deep Learning Image Reconstruction and Metal Artifact Reduction Algorithm on CT Image Quality in Different Scanning Conditions for Maxillofacial Region with Metal Implants: A Phantom Study

成像体模 图像质量 工件(错误) 还原(数学) 人工智能 图像(数学) 迭代重建 计算机视觉 材料科学 计算机科学 生物医学工程 医学 核医学 数学 几何学
作者
Gongxin Yang,Haowei Wang,Ling Liu,QY Ma,Huimin Shi,Ying Yuan
标识
DOI:10.1007/s10278-024-01287-4
摘要

This study aims to investigate the impact of combining deep learning image reconstruction (DLIR) and metal artifacts reduction (MAR) algorithms on the quality of CT images with metal implants under different scanning conditions. Four images of the maxillofacial region in pigs were taken using different metal implants for evaluation. The scans were conducted at three different dose levels (CTDIvol: 20/10/5 mGy). The images were reconstructed using three different methods: filtered back projection (FBP), adaptive statistical iterative reconstruction with Veo at a 50% level (AV50), and DLIR at three levels (low, medium, and high). Regions of interest (ROIs) were identified in various tissues (near/far/reference fat, muscle, bone) both with and without metal implants and artifacts. Parameters such as standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and metal artifact index (MAI) were calculated. Additionally, two experienced radiologists evaluated the subjective image quality (IQ) using a 5-point Likert scale. (1) Both observers rated MAR generated significantly lower artifact scores than non-MAR in all types of tissues (P < 0.01), except for the far shadow and bloom in bone (phantoms 1, 3, 4) and the far bloom in muscle (phantom 3) without significant differences (P = 1.0). (2) Under the same scanning condition, DLIR at three levels produced a smaller SD than those of FBP and AV50 (P < 0.05). (3) Compared to FBP and AV50, DLIR denoted a better reduction of MAI and improvement of SNR and CNR (P < 0.05) for most tissues between the four phantoms. (4) Subjective overall IQ was superior with the increasement of DLIR level (P < 0.05) and both observers agreed that DLIR produced better artifact reductions compared with FBP and AV50. The combination of DLIR and MAR algorithms can enhance image quality, significantly reduce metal artifacts, and offer high clinical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
滔滔江水完成签到,获得积分10
2秒前
月夜花朝完成签到 ,获得积分10
2秒前
火星上易真完成签到 ,获得积分10
3秒前
深情安青应助王贤平采纳,获得10
5秒前
sswbzh应助12采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
长情笑柳应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
TT001发布了新的文献求助10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
长情笑柳应助科研通管家采纳,获得10
7秒前
fufu发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
zhonglv7应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
yanting完成签到,获得积分10
7秒前
小伊完成签到,获得积分20
7秒前
传奇3应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109