Impact of Combined Deep Learning Image Reconstruction and Metal Artifact Reduction Algorithm on CT Image Quality in Different Scanning Conditions for Maxillofacial Region with Metal Implants: A Phantom Study

成像体模 图像质量 工件(错误) 还原(数学) 人工智能 图像(数学) 迭代重建 计算机视觉 材料科学 计算机科学 生物医学工程 医学 核医学 数学 几何学
作者
Gongxin Yang,Haowei Wang,Ling Liu,QY Ma,Huimin Shi,Ying Yuan
标识
DOI:10.1007/s10278-024-01287-4
摘要

This study aims to investigate the impact of combining deep learning image reconstruction (DLIR) and metal artifacts reduction (MAR) algorithms on the quality of CT images with metal implants under different scanning conditions. Four images of the maxillofacial region in pigs were taken using different metal implants for evaluation. The scans were conducted at three different dose levels (CTDIvol: 20/10/5 mGy). The images were reconstructed using three different methods: filtered back projection (FBP), adaptive statistical iterative reconstruction with Veo at a 50% level (AV50), and DLIR at three levels (low, medium, and high). Regions of interest (ROIs) were identified in various tissues (near/far/reference fat, muscle, bone) both with and without metal implants and artifacts. Parameters such as standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and metal artifact index (MAI) were calculated. Additionally, two experienced radiologists evaluated the subjective image quality (IQ) using a 5-point Likert scale. (1) Both observers rated MAR generated significantly lower artifact scores than non-MAR in all types of tissues (P < 0.01), except for the far shadow and bloom in bone (phantoms 1, 3, 4) and the far bloom in muscle (phantom 3) without significant differences (P = 1.0). (2) Under the same scanning condition, DLIR at three levels produced a smaller SD than those of FBP and AV50 (P < 0.05). (3) Compared to FBP and AV50, DLIR denoted a better reduction of MAI and improvement of SNR and CNR (P < 0.05) for most tissues between the four phantoms. (4) Subjective overall IQ was superior with the increasement of DLIR level (P < 0.05) and both observers agreed that DLIR produced better artifact reductions compared with FBP and AV50. The combination of DLIR and MAR algorithms can enhance image quality, significantly reduce metal artifacts, and offer high clinical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
碎碎发布了新的文献求助10
1秒前
2号发布了新的文献求助10
1秒前
111发布了新的文献求助10
2秒前
丘比特应助菜菜果冻采纳,获得10
2秒前
啾啾完成签到,获得积分10
2秒前
吴欣欣发布了新的文献求助10
2秒前
在水一方应助wang5945采纳,获得10
3秒前
斯文败类应助虚心的大树采纳,获得10
3秒前
4秒前
GGbond发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
三岁应助土豪的行云采纳,获得10
7秒前
ydl0927发布了新的文献求助10
7秒前
7秒前
xiaoyan完成签到,获得积分10
7秒前
8秒前
liu发布了新的文献求助10
8秒前
Magic1987发布了新的文献求助10
8秒前
8秒前
9秒前
颜雅僖发布了新的文献求助10
9秒前
10秒前
吴欣欣完成签到,获得积分10
10秒前
11秒前
喵喵发布了新的文献求助10
11秒前
聆听发布了新的文献求助10
12秒前
13秒前
nancyjcfan完成签到,获得积分10
13秒前
周楷航发布了新的文献求助10
13秒前
天天快乐应助宇文宛菡采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
上官若男应助yy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901