Intelligent Monitoring of Tunnel Fire Smoke Based on Improved YOLOX and Edge Computing

烟雾 环境科学 计算机科学 工程类 废物管理
作者
Chaojing Li,Bei Zhu,Guangyao Chen,Qiming Li,Zhao Xu
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (4): 2127-2127
标识
DOI:10.3390/app15042127
摘要

To overcome the defects of traditional fire detection methods that have a high false alarm rate and long delay, a smart tunnel fire monitoring method based on a YOLOX deep convolutional neural network and edge computing is proposed. This method first improves the detection accuracy by analyzing the relationship between frequency domain and convolutional neural networks and the use of wavelet transform. Then, based on the smoke features observed in the experiments, a fuzzy loss method is proposed to accelerate the model convergence speed. To address the issue of a weak computing power of edge devices, the training model is optimized by using knowledge distillation and model quantization, thereby improving the running speed on edge devices. At the same time, a series of related lightweight methods are adopted to optimize the model, reduce the computational cost, and improve the detection speed. Finally, the accuracy of flame and smoke detection on a self-built dataset reaches 85%, which is about 1.8% higher than the baseline method YOLOX and achieves a balance between the speed and accuracy of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助迷路的翠梅采纳,获得10
刚刚
福yyy发布了新的文献求助10
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
nobody完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Bobi发布了新的文献求助10
1秒前
七个丸子应助科研通管家采纳,获得10
1秒前
1秒前
愉快的藏今完成签到,获得积分10
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
静静小可爱完成签到,获得积分10
2秒前
2秒前
2秒前
七个丸子应助科研通管家采纳,获得10
2秒前
avalanche应助科研通管家采纳,获得100
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
3秒前
是江江哥啊完成签到,获得积分10
3秒前
zhangfugui完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
张鹏飞完成签到,获得积分10
3秒前
kevin完成签到 ,获得积分10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
dong完成签到,获得积分10
3秒前
开放的千青完成签到 ,获得积分10
3秒前
今后应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439377
求助须知:如何正确求助?哪些是违规求助? 4550536
关于积分的说明 14225071
捐赠科研通 4471548
什么是DOI,文献DOI怎么找? 2450403
邀请新用户注册赠送积分活动 1441270
关于科研通互助平台的介绍 1417882