A Novel Framework for Heterogeneity Decomposition and Mechanism Inference in Spatiotemporal Evolution of Groundwater Storage: Case Study in the North China Plain

推论 地下水 中国 分解 机制(生物学) 环境科学 水文学(农业) 水资源管理 地质学 地理 岩土工程 计算机科学 生态学 人工智能 考古 哲学 认识论 生物
作者
Xiaowei Zhao,Ying Yu,Jianmei Cheng,Kuiyuan Ding,Yiming Luo,Kun Zheng,Xian Yang,Yihang Lin
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (12)
标识
DOI:10.1029/2023wr036102
摘要

Abstract Properly understanding the evolution mechanisms of groundwater storage anomaly (GWSA) is the basis of making effective groundwater management strategies. However, current analysis methods cannot objectively capture the spatiotemporal evolution characteristics of GWSA, which might lead to erroneous inferences of the evolution mechanisms. Here, we developed a new framework to address the challenge of spatiotemporal heterogeneity in the GWSA evolution analysis. It is achieved by integrating the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), and the Optimal Parameters‐based Geographical Detector (OPGD). In the case study of the North China Plain (NCP), the GWSA time series is divided into four stages by three trend change points in BEAST. An increasing trend of GWSA is observed at Stage IV, and the third trend change point occurs before the third seasonal change point. This distinguishes the positive feedback of anthropogenic interventions and the effects of seasonal precipitations for the first time. Moreover, the spatial distribution of GWSA in the NCP is classified into two clusters by BIRCH in each stage. The differences in GWSA trends and responses to environmental changes between Cluster‐1 and Cluster‐2 are significant. Then the driving effects of 16 factors on the evolution of GWSA are identified using OPGD, in which the contributions of topographic and aquifer characteristics are highlighted by quantitative analysis. This framework provides a novel method for examining the spatiotemporal heterogeneity of GWSA, which can be extended to analyze spatiotemporal trends in GWSA at diverse scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇真发布了新的文献求助10
1秒前
俏皮连虎完成签到,获得积分10
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
Liufgui应助科研通管家采纳,获得50
1秒前
dypdyp应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得100
1秒前
佳佳应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
佳佳应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
佳佳应助科研通管家采纳,获得10
2秒前
Liufgui应助科研通管家采纳,获得10
2秒前
Liufgui应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
彪壮的小五完成签到,获得积分10
3秒前
wanjinlei完成签到 ,获得积分10
3秒前
ttyj发布了新的文献求助10
4秒前
爆米花应助喜悦芫采纳,获得10
5秒前
上官若男应助细心的语蓉采纳,获得10
6秒前
郭冰芯完成签到,获得积分10
7秒前
xxwyj完成签到,获得积分10
8秒前
英勇真完成签到,获得积分20
9秒前
Akim应助乒坛巨人采纳,获得10
11秒前
ttyj完成签到,获得积分20
12秒前
田様应助DuFeiYi采纳,获得10
13秒前
顺利凡阳完成签到 ,获得积分10
14秒前
猪猪hero应助热心小松鼠采纳,获得10
15秒前
arabidopsis应助热心小松鼠采纳,获得10
15秒前
英俊的铭应助热心小松鼠采纳,获得10
15秒前
15秒前
cc应助猪皮king采纳,获得20
17秒前
18秒前
明朗完成签到 ,获得积分10
19秒前
20秒前
所所应助WD采纳,获得10
20秒前
深情安青应助ZSWAA采纳,获得10
22秒前
华仔应助尺素寸心采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450