A Novel Framework for Heterogeneity Decomposition and Mechanism Inference in Spatiotemporal Evolution of Groundwater Storage: Case Study in the North China Plain

推论 地下水 中国 分解 机制(生物学) 环境科学 水文学(农业) 水资源管理 地质学 地理 岩土工程 计算机科学 生态学 人工智能 考古 生物 认识论 哲学
作者
Xiaowei Zhao,Ying Yu,Jianmei Cheng,Kuiyuan Ding,Yiming Luo,Kun Zheng,Xian Yang,Yihang Lin
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (12)
标识
DOI:10.1029/2023wr036102
摘要

Abstract Properly understanding the evolution mechanisms of groundwater storage anomaly (GWSA) is the basis of making effective groundwater management strategies. However, current analysis methods cannot objectively capture the spatiotemporal evolution characteristics of GWSA, which might lead to erroneous inferences of the evolution mechanisms. Here, we developed a new framework to address the challenge of spatiotemporal heterogeneity in the GWSA evolution analysis. It is achieved by integrating the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), and the Optimal Parameters‐based Geographical Detector (OPGD). In the case study of the North China Plain (NCP), the GWSA time series is divided into four stages by three trend change points in BEAST. An increasing trend of GWSA is observed at Stage IV, and the third trend change point occurs before the third seasonal change point. This distinguishes the positive feedback of anthropogenic interventions and the effects of seasonal precipitations for the first time. Moreover, the spatial distribution of GWSA in the NCP is classified into two clusters by BIRCH in each stage. The differences in GWSA trends and responses to environmental changes between Cluster‐1 and Cluster‐2 are significant. Then the driving effects of 16 factors on the evolution of GWSA are identified using OPGD, in which the contributions of topographic and aquifer characteristics are highlighted by quantitative analysis. This framework provides a novel method for examining the spatiotemporal heterogeneity of GWSA, which can be extended to analyze spatiotemporal trends in GWSA at diverse scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的尔珍完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
粟粟完成签到,获得积分10
2秒前
2秒前
tyyfighting发布了新的文献求助10
2秒前
汉堡包应助wave采纳,获得10
3秒前
3秒前
顾矜应助湫殇采纳,获得10
4秒前
深情安青应助smiles采纳,获得10
4秒前
zsc发布了新的文献求助10
4秒前
4秒前
Xavier完成签到,获得积分10
5秒前
张真狗发布了新的文献求助10
5秒前
英姑应助赵柯宇采纳,获得10
6秒前
6秒前
落后的慕梅完成签到 ,获得积分10
6秒前
魏某某发布了新的文献求助10
6秒前
6秒前
6秒前
WSR发布了新的文献求助10
6秒前
阿南完成签到,获得积分10
7秒前
7秒前
十二月完成签到,获得积分10
7秒前
J_Man发布了新的文献求助10
7秒前
芽芽鸭发布了新的文献求助10
8秒前
8秒前
慕青应助胡亚辉采纳,获得10
8秒前
8秒前
粟粟发布了新的文献求助10
9秒前
朱罗娟完成签到,获得积分10
9秒前
10秒前
ding应助ljq采纳,获得10
10秒前
10秒前
10秒前
科研通AI6应助elang采纳,获得10
11秒前
打打应助Xavier采纳,获得10
11秒前
xxx完成签到,获得积分10
11秒前
zzzy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085703
求助须知:如何正确求助?哪些是违规求助? 4301785
关于积分的说明 13405360
捐赠科研通 4126726
什么是DOI,文献DOI怎么找? 2260000
邀请新用户注册赠送积分活动 1264125
关于科研通互助平台的介绍 1198313