A Novel Framework for Heterogeneity Decomposition and Mechanism Inference in Spatiotemporal Evolution of Groundwater Storage: Case Study in the North China Plain

推论 地下水 中国 分解 机制(生物学) 环境科学 水文学(农业) 水资源管理 地质学 地理 岩土工程 计算机科学 生态学 人工智能 考古 哲学 认识论 生物
作者
Xiaowei Zhao,Ying Yu,Jianmei Cheng,Kuiyuan Ding,Yiming Luo,Kun Zheng,Xian Yang,Yihang Lin
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (12)
标识
DOI:10.1029/2023wr036102
摘要

Abstract Properly understanding the evolution mechanisms of groundwater storage anomaly (GWSA) is the basis of making effective groundwater management strategies. However, current analysis methods cannot objectively capture the spatiotemporal evolution characteristics of GWSA, which might lead to erroneous inferences of the evolution mechanisms. Here, we developed a new framework to address the challenge of spatiotemporal heterogeneity in the GWSA evolution analysis. It is achieved by integrating the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), and the Optimal Parameters‐based Geographical Detector (OPGD). In the case study of the North China Plain (NCP), the GWSA time series is divided into four stages by three trend change points in BEAST. An increasing trend of GWSA is observed at Stage IV, and the third trend change point occurs before the third seasonal change point. This distinguishes the positive feedback of anthropogenic interventions and the effects of seasonal precipitations for the first time. Moreover, the spatial distribution of GWSA in the NCP is classified into two clusters by BIRCH in each stage. The differences in GWSA trends and responses to environmental changes between Cluster‐1 and Cluster‐2 are significant. Then the driving effects of 16 factors on the evolution of GWSA are identified using OPGD, in which the contributions of topographic and aquifer characteristics are highlighted by quantitative analysis. This framework provides a novel method for examining the spatiotemporal heterogeneity of GWSA, which can be extended to analyze spatiotemporal trends in GWSA at diverse scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
优雅的橘子完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
zeven发布了新的文献求助30
5秒前
喜悦秋白发布了新的文献求助10
5秒前
潘爱玲发布了新的文献求助10
5秒前
ZJ发布了新的文献求助10
5秒前
万能图书馆应助Jian采纳,获得10
6秒前
苏夏完成签到 ,获得积分10
6秒前
无敌反派大美人应助雾1206采纳,获得10
6秒前
7秒前
7秒前
xjw发布了新的文献求助10
7秒前
7秒前
10秒前
称心的新之完成签到,获得积分10
11秒前
11秒前
Carpe47发布了新的文献求助10
12秒前
少少少发布了新的文献求助10
12秒前
香蕉觅云应助zjy03259采纳,获得10
13秒前
14秒前
zzzkyt发布了新的文献求助10
14秒前
16秒前
fagfagsf发布了新的文献求助10
17秒前
wandelong发布了新的文献求助10
17秒前
彭于晏应助小胖采纳,获得10
18秒前
xuqiansd完成签到,获得积分10
18秒前
curtisness应助可爱的小树苗采纳,获得10
18秒前
小寒0812完成签到,获得积分10
19秒前
damieob发布了新的文献求助10
20秒前
丘比特应助危机的泥猴桃采纳,获得10
21秒前
22秒前
脑洞疼应助hjl采纳,获得10
22秒前
23秒前
23秒前
yao完成签到,获得积分10
24秒前
领导范儿应助damieob采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358519
求助须知:如何正确求助?哪些是违规求助? 2981683
关于积分的说明 8700144
捐赠科研通 2663263
什么是DOI,文献DOI怎么找? 1458365
科研通“疑难数据库(出版商)”最低求助积分说明 675112
邀请新用户注册赠送积分活动 666149