MRP-YOLO: An Improved YOLOv8 Algorithm for Steel Surface Defects

算法 计算机科学 曲面(拓扑) 环境科学 材料科学 数学 几何学
作者
Shuxian Zhu,Ya-jin Zhou
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 917-917
标识
DOI:10.3390/machines12120917
摘要

The existing detection algorithms are unable to achieve a suitable balance between detection accuracy and inference speed. As the accuracy of the algorithm increases, its complexity also rises, resulting in a decrease in detection speed, which undermines its practicality. This issue is particularly evident in the context of surface defect detection in industrial parts, where low contrast, small target features, difficult feature extraction, and low real-time detection efficiency are prominent challenges. This study proposes a novel method for steel defect detection based on the YOLO v8 algorithm, which improves detection accuracy while maintaining low computational complexity. Firstly, the global background and edge information are adaptively extracted via the MSA-SPPF module in order to obtain a more comprehensive feature representation. Furthermore, the anti-interference ability of the model is enhanced through the deformability of attention and the large convolution kernel characteristics. Secondly, the design of Dynamic Conv and C2f-OREPA enables the model to efficiently reduce the demand for computational resources while maintaining high performance. It is further proposed that the RepHead detection head approximates the multi-branch structure of the original training by a single convolution operation. This approach not only enriches the feature representation but also maintains an efficient inference process. The effectiveness of the improved MRP-YOLO algorithm is verified using the NEU-DET industrial surface defect dataset. The experimental results demonstrate that the mAP of the MRP-YOLO algorithm reaches 75.6%, which is 2.2% higher than that of the YOLOv8n algorithm, while the FLOPs are only 2.3 G higher. It indicates that the detection accuracy is significantly improved with a limited increase in computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhxiao完成签到,获得积分10
1秒前
清爽如雪发布了新的文献求助60
1秒前
慕青应助lhnee采纳,获得10
1秒前
L外驴尔X完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
xzy发布了新的文献求助10
3秒前
3秒前
璟晔发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
4秒前
仁爱钢笔发布了新的文献求助10
5秒前
LCD发布了新的文献求助10
5秒前
Rebeccaiscute完成签到 ,获得积分10
5秒前
Snow完成签到 ,获得积分10
5秒前
5秒前
龙龙发布了新的文献求助10
6秒前
6秒前
Zhou完成签到,获得积分10
6秒前
7秒前
7秒前
忧郁盼夏发布了新的文献求助10
7秒前
任小萱完成签到,获得积分10
7秒前
paper完成签到 ,获得积分10
7秒前
朱洛尘完成签到 ,获得积分10
8秒前
小艾完成签到,获得积分10
8秒前
Camellia发布了新的文献求助100
8秒前
黑白完成签到,获得积分10
9秒前
jiajin发布了新的文献求助10
9秒前
zhang完成签到,获得积分10
9秒前
beituo完成签到,获得积分10
9秒前
李安全完成签到,获得积分10
9秒前
彭于晏应助2以李采纳,获得10
9秒前
123456完成签到,获得积分10
10秒前
nuantong1shy完成签到,获得积分10
10秒前
甜甜亦巧完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759