MRP-YOLO: An Improved YOLOv8 Algorithm for Steel Surface Defects

算法 计算机科学 曲面(拓扑) 环境科学 材料科学 数学 几何学
作者
Shuxian Zhu,Ya-jin Zhou
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 917-917
标识
DOI:10.3390/machines12120917
摘要

The existing detection algorithms are unable to achieve a suitable balance between detection accuracy and inference speed. As the accuracy of the algorithm increases, its complexity also rises, resulting in a decrease in detection speed, which undermines its practicality. This issue is particularly evident in the context of surface defect detection in industrial parts, where low contrast, small target features, difficult feature extraction, and low real-time detection efficiency are prominent challenges. This study proposes a novel method for steel defect detection based on the YOLO v8 algorithm, which improves detection accuracy while maintaining low computational complexity. Firstly, the global background and edge information are adaptively extracted via the MSA-SPPF module in order to obtain a more comprehensive feature representation. Furthermore, the anti-interference ability of the model is enhanced through the deformability of attention and the large convolution kernel characteristics. Secondly, the design of Dynamic Conv and C2f-OREPA enables the model to efficiently reduce the demand for computational resources while maintaining high performance. It is further proposed that the RepHead detection head approximates the multi-branch structure of the original training by a single convolution operation. This approach not only enriches the feature representation but also maintains an efficient inference process. The effectiveness of the improved MRP-YOLO algorithm is verified using the NEU-DET industrial surface defect dataset. The experimental results demonstrate that the mAP of the MRP-YOLO algorithm reaches 75.6%, which is 2.2% higher than that of the YOLOv8n algorithm, while the FLOPs are only 2.3 G higher. It indicates that the detection accuracy is significantly improved with a limited increase in computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincenzo发布了新的文献求助10
1秒前
Orange应助黑黑黑采纳,获得10
1秒前
xnzll发布了新的文献求助10
3秒前
3秒前
3秒前
优美的钢铁侠完成签到,获得积分10
3秒前
高lucky发布了新的文献求助10
4秒前
han发布了新的文献求助10
4秒前
zhouxuefeng完成签到,获得积分10
4秒前
4秒前
5秒前
深情安青应助风趣的老太采纳,获得10
6秒前
zeason完成签到,获得积分10
7秒前
popcorn完成签到 ,获得积分10
7秒前
SHAO完成签到,获得积分0
7秒前
木槿花难开完成签到,获得积分10
8秒前
曹博关注了科研通微信公众号
8秒前
8秒前
key发布了新的文献求助10
9秒前
梦想在飞发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
10秒前
大胆嘞完成签到 ,获得积分10
10秒前
10秒前
科目三应助高lucky采纳,获得10
10秒前
啦啦啦完成签到,获得积分10
11秒前
11秒前
xnzll完成签到,获得积分10
12秒前
奥利奥爱好者完成签到,获得积分10
12秒前
hdy关注了科研通微信公众号
13秒前
寒冷的咖啡应助可爱板栗采纳,获得20
13秒前
14秒前
光亮笑柳发布了新的文献求助10
14秒前
黑黑黑发布了新的文献求助10
14秒前
han完成签到,获得积分20
14秒前
CodeCraft应助LL采纳,获得10
15秒前
15秒前
照照完成签到,获得积分20
16秒前
歪歪完成签到,获得积分10
17秒前
18秒前
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202