亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRP-YOLO: An Improved YOLOv8 Algorithm for Steel Surface Defects

算法 计算机科学 曲面(拓扑) 环境科学 材料科学 数学 几何学
作者
Shuxian Zhu,Ya-jin Zhou
出处
期刊:Machines [MDPI AG]
卷期号:12 (12): 917-917
标识
DOI:10.3390/machines12120917
摘要

The existing detection algorithms are unable to achieve a suitable balance between detection accuracy and inference speed. As the accuracy of the algorithm increases, its complexity also rises, resulting in a decrease in detection speed, which undermines its practicality. This issue is particularly evident in the context of surface defect detection in industrial parts, where low contrast, small target features, difficult feature extraction, and low real-time detection efficiency are prominent challenges. This study proposes a novel method for steel defect detection based on the YOLO v8 algorithm, which improves detection accuracy while maintaining low computational complexity. Firstly, the global background and edge information are adaptively extracted via the MSA-SPPF module in order to obtain a more comprehensive feature representation. Furthermore, the anti-interference ability of the model is enhanced through the deformability of attention and the large convolution kernel characteristics. Secondly, the design of Dynamic Conv and C2f-OREPA enables the model to efficiently reduce the demand for computational resources while maintaining high performance. It is further proposed that the RepHead detection head approximates the multi-branch structure of the original training by a single convolution operation. This approach not only enriches the feature representation but also maintains an efficient inference process. The effectiveness of the improved MRP-YOLO algorithm is verified using the NEU-DET industrial surface defect dataset. The experimental results demonstrate that the mAP of the MRP-YOLO algorithm reaches 75.6%, which is 2.2% higher than that of the YOLOv8n algorithm, while the FLOPs are only 2.3 G higher. It indicates that the detection accuracy is significantly improved with a limited increase in computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小aa16完成签到,获得积分10
1秒前
jyy应助zzx采纳,获得10
5秒前
贝儿完成签到,获得积分10
7秒前
10秒前
思源应助keroroleung采纳,获得10
18秒前
20秒前
jyy应助zzx采纳,获得10
21秒前
49秒前
hehe23he完成签到,获得积分10
50秒前
Mark_He发布了新的文献求助10
55秒前
58秒前
传奇3应助科研通管家采纳,获得10
1分钟前
keroroleung发布了新的文献求助10
1分钟前
1分钟前
李爱国应助Mark_He采纳,获得30
1分钟前
平淡青筠完成签到,获得积分10
1分钟前
Mark_He完成签到,获得积分20
1分钟前
tuanheqi完成签到,获得积分0
1分钟前
qqq发布了新的文献求助10
1分钟前
陌路完成签到 ,获得积分10
1分钟前
hh完成签到,获得积分10
1分钟前
平淡青筠发布了新的文献求助10
1分钟前
1分钟前
伟航完成签到,获得积分20
1分钟前
1分钟前
hh发布了新的文献求助10
1分钟前
会厌完成签到 ,获得积分10
2分钟前
2分钟前
景瑜发布了新的文献求助10
2分钟前
嘉心糖应助景瑜采纳,获得20
2分钟前
Hayat给ANQ的求助进行了留言
2分钟前
hu发布了新的文献求助10
2分钟前
欣喜忻完成签到,获得积分10
2分钟前
NexusExplorer应助hu采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
春日奶黄包完成签到 ,获得积分10
3分钟前
完美世界应助Big_Show采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482405
捐赠科研通 2611452
什么是DOI,文献DOI怎么找? 1425877
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 646980