清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of an Active Cerebrovascular Autoregulation Model Using Representation Learning: A Proof of Concept Study With Experimental Data

脑自动调节 医学 自动调节 颅内压 人工智能 代表(政治) 生物医学工程 判别式 脑灌注压 脑血流 模式识别(心理学) 血压 内科学 计算机科学 麻醉 政治 政治学 法学
作者
Bavo Kempen,Samuel P. Klein,Veerle Tineke De Sloovere,Maarten De Vos,Bart Depreitere
出处
期刊:Neurosurgery [Oxford University Press]
标识
DOI:10.1227/neu.0000000000003321
摘要

It remains a challenge to monitor cerebrovascular autoregulation (CA) reliably and dynamically in an intensive care unit. The objective was to build a proof-of-concept active CA model exploiting advances in representation learning and the full complexity of the arterial blood pressure (ABP) and intracranial pressure (ICP) signal and outperform the pressure reactivity index (PRx). A porcine cranial window CA data set (n = 20) was used. ABP and ICP signals were preprocessed and downsampled to 20 Hz. Quadriphasic CA state labels were assigned to each piglet's CA curve and projected on their preprocessed ABP and ICP time series. Windowed ABP and ICP segments of 300 seconds, reflecting active CA, were used to optimize a neural network to reconstruct its own input. Reconstruction error of ABP and ICP were compared between active CA and inactive CA, and assessed together with PRx over quadriphasic CA states. The study confirmed that the optimized model achieved stellar reconstruction quality of ABP and ICP segments that derived from active CA while reconstruction quality deteriorated for segments that came from inactive CA. ABP and ICP reconstruction errors steadily increased concurrently with cerebral blood flow deviation from baseline. A significant interaction between variable and CA state showed that the model captured the differential behavior of CA with increasing vs decreasing cerebral perfusion pressures and offered improved discriminative ability regarding PRx. The present work showed that an active CA model can be built using advanced representation learning and the full complexity of 300-second ABP and ICP segments. On assessment in an experimental data set, relevant CA state information was present in both lower and higher frequencies of ABP and ICP. Improved discriminative ability between CA states was attained regarding PRx, which focuses only on slow-wave ABP and ICP information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭荃完成签到 ,获得积分0
3秒前
coolplex完成签到 ,获得积分10
13秒前
Leon应助ceeray23采纳,获得20
14秒前
afli完成签到 ,获得积分10
18秒前
丹妮完成签到 ,获得积分10
18秒前
hhh2018687完成签到,获得积分10
22秒前
和谐的夏岚完成签到 ,获得积分10
22秒前
碗碗豆喵完成签到 ,获得积分10
33秒前
赛韓吧完成签到 ,获得积分10
38秒前
1分钟前
月儿完成签到 ,获得积分10
1分钟前
一白完成签到 ,获得积分10
1分钟前
再也不见发布了新的文献求助10
1分钟前
阿托伐他汀完成签到 ,获得积分10
1分钟前
红茸茸羊完成签到 ,获得积分10
1分钟前
送你一匹马完成签到 ,获得积分10
1分钟前
天边的云彩完成签到,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
2分钟前
思源应助白玉元宵采纳,获得10
2分钟前
chao Liu完成签到 ,获得积分0
2分钟前
laohei94_6完成签到 ,获得积分10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
压缩完成签到 ,获得积分10
2分钟前
2分钟前
白玉元宵完成签到,获得积分10
3分钟前
如意2023完成签到 ,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
3分钟前
zcbb完成签到,获得积分10
3分钟前
3分钟前
李爱国应助savagecas采纳,获得10
3分钟前
白玉元宵发布了新的文献求助10
3分钟前
科研通AI2S应助oleskarabach采纳,获得10
3分钟前
chengmin完成签到 ,获得积分10
3分钟前
3分钟前
故意的怜晴完成签到 ,获得积分10
3分钟前
savagecas发布了新的文献求助10
3分钟前
xuan完成签到,获得积分10
4分钟前
LZQ发布了新的文献求助10
4分钟前
落后冬云完成签到 ,获得积分10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539098
求助须知:如何正确求助?哪些是违规求助? 3116670
关于积分的说明 9326538
捐赠科研通 2814659
什么是DOI,文献DOI怎么找? 1547002
邀请新用户注册赠送积分活动 720710
科研通“疑难数据库(出版商)”最低求助积分说明 712192