Automatic programming via large language models with population self-evolution for dynamic job shop scheduling problem

计算机科学 动态规划 作业车间调度 动态优先级调度 调度(生产过程) 数学优化 程序设计语言 算法 数学 地铁列车时刻表 操作系统
作者
Jin Huang,Xinyu Li,Liang Gao,Qihao Liu,Yue Teng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.22657
摘要

Heuristic dispatching rules (HDRs) are widely regarded as effective methods for solving dynamic job shop scheduling problems (DJSSP) in real-world production environments. However, their performance is highly scenario-dependent, often requiring expert customization. To address this, genetic programming (GP) and gene expression programming (GEP) have been extensively used for automatic algorithm design. Nevertheless, these approaches often face challenges due to high randomness in the search process and limited generalization ability, hindering the application of trained dispatching rules to new scenarios or dynamic environments. Recently, the integration of large language models (LLMs) with evolutionary algorithms has opened new avenues for prompt engineering and automatic algorithm design. To enhance the capabilities of LLMs in automatic HDRs design, this paper proposes a novel population self-evolutionary (SeEvo) method, a general search framework inspired by the self-reflective design strategies of human experts. The SeEvo method accelerates the search process and enhances exploration capabilities. Experimental results show that the proposed SeEvo method outperforms GP, GEP, end-to-end deep reinforcement learning methods, and more than 10 common HDRs from the literature, particularly in unseen and dynamic scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯婷完成签到 ,获得积分10
1秒前
张清璇完成签到,获得积分20
2秒前
Leucalypt完成签到 ,获得积分10
2秒前
宜醉宜游宜睡应助Yyy采纳,获得10
2秒前
3秒前
lyl19880908应助栀晴采纳,获得10
3秒前
3秒前
5秒前
未来完成签到,获得积分10
5秒前
善学以致用应助小可采纳,获得10
5秒前
烟花应助刘珍荣采纳,获得10
5秒前
大气亦瑶完成签到,获得积分20
6秒前
6秒前
6秒前
大个应助tony采纳,获得10
8秒前
wlh256发布了新的文献求助10
8秒前
劲秉应助燕燕于飞采纳,获得10
10秒前
sss2021发布了新的文献求助10
10秒前
任性沁发布了新的文献求助10
11秒前
piggy发布了新的文献求助200
11秒前
hh完成签到,获得积分10
11秒前
Akim应助zz采纳,获得10
12秒前
12秒前
充电宝应助Lo采纳,获得10
12秒前
13秒前
大气的秋完成签到,获得积分10
14秒前
劲秉应助tt采纳,获得20
14秒前
脑洞疼应助zychaos采纳,获得10
14秒前
14秒前
15秒前
我是老大应助听毛细胞Hey采纳,获得10
15秒前
16秒前
16秒前
椰子树完成签到,获得积分20
16秒前
17秒前
17秒前
17秒前
fan发布了新的文献求助10
18秒前
壮观以松发布了新的文献求助10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469657
求助须知:如何正确求助?哪些是违规求助? 3062868
关于积分的说明 9080250
捐赠科研通 2753067
什么是DOI,文献DOI怎么找? 1510691
科研通“疑难数据库(出版商)”最低求助积分说明 697975
邀请新用户注册赠送积分活动 697938