催化作用
漫反射红外傅里叶变换
材料科学
解吸
吸附
傅里叶变换红外光谱
原位
光催化
吸收(声学)
光谱学
氧气
红外光谱学
光化学
化学工程
物理化学
化学
有机化学
物理
量子力学
工程类
复合材料
作者
Nguyen Quoc Thang,Amr Sabbah,P. Raghunath,Chih‐Yang Huang,Tsai‐Yu Lin,Mahmoud Kamal Hussien,Heng‐Liang Wu,M. C. Lin,Chih‐Hao Lee,Kuei‐Hsien Chen,Li‐Chyong Chen
标识
DOI:10.1002/adfm.202423751
摘要
Abstract Solar‐driven CO 2 reduction holds great promise for sustainable energy, yet the role of atomic active sites in governing intermediate formation and conversion remains poorly understood. Herein, a synergistic strategy using Ni single atoms (SAs) and surface oxygen vacancies (O v ) is reported to regulate the CO 2 reduction pathway on the Bi 2 WO 6 photocatalyst. Combining in‐situ techniques and theoretical modeling, the reaction mechanism and the structure‐activity relationship is elucidated. In‐situ X‐ray absorption spectroscopy identifies Bi and Ni as active sites, and in‐situ diffuse reflectance infrared Fourier transform spectroscopy demonstrates that adsorption of H 2 O and CO 2 readily forms CO 3 2− species on the O v ‐rich catalyst. Optimally balancing Ni SAs and O v lowers the energy barrier for the formation and dehydration of a key COOH intermediate, leading to favorable CO formation and desorption. Consequently, a superior CO production efficiency of 53.49 µmol g ‒1 is achieved, surpassing previous reports on Bi 2 WO 6 ‐based catalysts for gas‐phase CO 2 photoreduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI