TT@MHA: A machine learning-based webpage tool for discriminating thalassemia trait from microcytic hypochromic anemia patients

人工智能 逻辑回归 医学 贫血 地中海贫血 内科学 线性判别分析 胃肠病学 机器学习 计算机科学
作者
Fan Zhang,Jing Yang,Yang Wang,Manyi Cai,Juan Ouyang,Junxun Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:545: 117368-117368 被引量:12
标识
DOI:10.1016/j.cca.2023.117368
摘要

Iron deficiency anemia (IDA) and thalassemia trait (TT) are the most common causes of microcytic hypochromic anemia (MHA) and are endemic in lower resource settings and rural areas with poor medical infrastructure. Accurate discrimination between IDA and TT is an essential issue for MHA patients. Although various discriminant formulas have been reported, distinguishing between IDA and TT is still a challenging problem due to the diversity of anemic populations. We retrospectively collected laboratory data from 798 MHA patients. High proportions of α-TT (43.33 %) and TT concomitant with IDA (TT&IDA) patients (14.04 %) were found among TT patients. Five machine learning (ML) approaches, including Liner SVC (L-SVC), support vector machine learning (SVM), Extreme gradient boosting (XGB), Logistic Regression (LR), and Random Forest (RF), were applied to develop a discriminant model. Performance was assessed and compared with six existing discriminant formulas. The RF model was chosen as the discriminant algorithm, namely [email protected] [email protected] was tested in an interlaboratory cohort with a sensitivity, specificity, accuracy, and AUC of 91.91 %, 91.00 %, 91.53 %, and 0.942, respectively. A webpage tool of [email protected] (https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=26408&topicName=undefined&from=share&platformType=wisdom) was developed to facilitate the healthcare providers in rural areas. The ML-based [email protected] algorithm, with high sensitivity and specificity, could help discriminate TT patients from MHA patients, especially in populations with high proportions of α-TT patients and TT&IDA patients. Moreover, a user-friendly webpage tool for [email protected] could facilitate healthcare providers in rural areas where advanced technologies are not accessible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帆帆发布了新的文献求助10
刚刚
Akim应助过时的飞鸟采纳,获得10
1秒前
1秒前
毛八帝丶完成签到,获得积分10
1秒前
1秒前
gui发布了新的文献求助10
1秒前
机智的念文完成签到,获得积分10
2秒前
想学习发布了新的文献求助10
2秒前
童书兰发布了新的文献求助10
2秒前
jadexuanxuan完成签到,获得积分10
3秒前
渐入佳境发布了新的文献求助10
3秒前
单人衣服发布了新的文献求助10
3秒前
科研通AI6应助jimoon采纳,获得10
3秒前
子涵流年发布了新的文献求助10
3秒前
希望天下0贩的0应助Y8采纳,获得10
3秒前
颜颜完成签到,获得积分10
3秒前
Xiaoqiu完成签到 ,获得积分10
3秒前
路遥完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
汉堡包应助嘿嘿采纳,获得10
5秒前
无花果应助欣慰的晓啸采纳,获得10
6秒前
6秒前
南岸娜娜完成签到 ,获得积分10
6秒前
7秒前
大气早晨发布了新的文献求助10
7秒前
7秒前
7秒前
沉甸甸完成签到,获得积分10
7秒前
8秒前
gui完成签到,获得积分10
8秒前
GGG完成签到,获得积分10
9秒前
mlll发布了新的文献求助10
9秒前
Akiba完成签到,获得积分10
10秒前
10秒前
10秒前
123发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531594
求助须知:如何正确求助?哪些是违规求助? 4620404
关于积分的说明 14573182
捐赠科研通 4560142
什么是DOI,文献DOI怎么找? 2498713
邀请新用户注册赠送积分活动 1478629
关于科研通互助平台的介绍 1449993