TT@MHA: A machine learning-based webpage tool for discriminating thalassemia trait from microcytic hypochromic anemia patients

人工智能 逻辑回归 医学 贫血 地中海贫血 内科学 线性判别分析 胃肠病学 机器学习 计算机科学
作者
Fan Zhang,Jing Yang,Yang Wang,Manyi Cai,Juan Ouyang,Junxun Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:545: 117368-117368 被引量:10
标识
DOI:10.1016/j.cca.2023.117368
摘要

Iron deficiency anemia (IDA) and thalassemia trait (TT) are the most common causes of microcytic hypochromic anemia (MHA) and are endemic in lower resource settings and rural areas with poor medical infrastructure. Accurate discrimination between IDA and TT is an essential issue for MHA patients. Although various discriminant formulas have been reported, distinguishing between IDA and TT is still a challenging problem due to the diversity of anemic populations. We retrospectively collected laboratory data from 798 MHA patients. High proportions of α-TT (43.33 %) and TT concomitant with IDA (TT&IDA) patients (14.04 %) were found among TT patients. Five machine learning (ML) approaches, including Liner SVC (L-SVC), support vector machine learning (SVM), Extreme gradient boosting (XGB), Logistic Regression (LR), and Random Forest (RF), were applied to develop a discriminant model. Performance was assessed and compared with six existing discriminant formulas. The RF model was chosen as the discriminant algorithm, namely [email protected] [email protected] was tested in an interlaboratory cohort with a sensitivity, specificity, accuracy, and AUC of 91.91 %, 91.00 %, 91.53 %, and 0.942, respectively. A webpage tool of [email protected] (https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=26408&topicName=undefined&from=share&platformType=wisdom) was developed to facilitate the healthcare providers in rural areas. The ML-based [email protected] algorithm, with high sensitivity and specificity, could help discriminate TT patients from MHA patients, especially in populations with high proportions of α-TT patients and TT&IDA patients. Moreover, a user-friendly webpage tool for [email protected] could facilitate healthcare providers in rural areas where advanced technologies are not accessible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song发布了新的文献求助10
2秒前
阿季发布了新的文献求助10
3秒前
5秒前
大海完成签到,获得积分20
5秒前
严惜完成签到,获得积分10
7秒前
枯木逢春应助小杨采纳,获得10
8秒前
科研我是无敌dio完成签到,获得积分10
8秒前
hhh发布了新的文献求助30
10秒前
10秒前
wang完成签到,获得积分10
13秒前
顾翩翩完成签到,获得积分10
14秒前
大模型应助dm采纳,获得10
15秒前
是青青呀发布了新的文献求助10
15秒前
BaooooooMao完成签到,获得积分10
16秒前
共享精神应助阿季采纳,获得10
17秒前
小王大王发布了新的文献求助10
18秒前
hhh完成签到,获得积分10
19秒前
科研通AI2S应助NZH采纳,获得10
19秒前
20秒前
田様应助66m37采纳,获得10
21秒前
21秒前
22秒前
可可可刻完成签到,获得积分20
22秒前
LY0430发布了新的文献求助10
24秒前
科研通AI2S应助开心的铅笔采纳,获得10
24秒前
25秒前
可可可刻发布了新的文献求助30
25秒前
26秒前
27秒前
万能图书馆应助MOhy采纳,获得10
27秒前
29秒前
30秒前
30秒前
简让发布了新的文献求助10
30秒前
31秒前
33秒前
34秒前
Ava应助sifvld采纳,获得20
36秒前
cc完成签到,获得积分10
36秒前
bkagyin应助zzy采纳,获得10
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233196
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212752
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623086