摘要
Chapter 1 Basics of Two-dimensional NMR Book Editor(s):K. Ivanov, K. IvanovSearch for more papers by this authorP.K. Madhu, P.K. MadhuSearch for more papers by this authorG. Rajalakshmi, G. RajalakshmiSearch for more papers by this author First published: 14 April 2023 https://doi.org/10.1002/9781119806721.ch1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Abstract The introduction of pulse-Fourier transform NMR established a permanent link between the time-domain “physics” phenomena and the continuous-wave “chemistry” procedures. The principles of time-domain NMR are expressed most compactly in Liouville space , meaning the space of all orthogonal operators for the spin system. A general two-dimensional NMR pulse sequence is constructed by inserting an evolution interval and a mixing sequence into a 1D pulse sequence. In the majority of NMR experiments, the nuclear magnetization is detected by the Faraday induction of an electrical signal in a coil of wire close to the NMR sample, induced by precessing transverse magnetization. One of the most powerful and versatile principles of 2D NMR is that it allows the experimental determination of correlations in the NMR behavior of the nuclear spin system at two different points in time. Ernst , R.R. and Anderson , W.A. ( 1966 January). Application of fourier transform spectroscopy to magnetic resonance . Rev. Sci. Instrum . 37 ( 1 ): 93 – 102 . ISSN 0034-6748. Hahn , E.L. ( 1950 ). Spin Echoes . Phys. Rev . 80 : 580 – 594 . Hahn , E.L. and Maxwell , D.E. ( 1952 ). Spin echo measurements of nuclear spin coupling in molecules . Phys. Rev . 88 ( 5 ): 1070 – 1084 . Meiboom , S. and Gill , D. ( 1958 August). Modified spin-echo method for measuring nuclear relaxation times . Rev. Sci. Instrum . 29 ( 8 ): 688 – 691 . ISSN 0034-6748. Hartmann , S.R. and Hahn , E.L. ( 1962 ). Nuclear double resonance in the rotating frame . Phys. Rev . 128 : 2042 – 2053 . Bloch , F. ( 1946 October). Nuclear Induction . Phys. Rev . 70 ( 7-8 ): 460 – 474 . Cooley , J.W. and Tukey , J.W. ( 1965 ). An algorithm for the machine calculation of complex Fourier series. Math. Comp . 19 ( 90 ): 297 – 301 . ISSN 0025-5718, 1088-6842. Atmanspacher, H. Remembering Hans Primas ( 1928 –2014). (2014 January). Mind Matter . Banwell , C.N. and Primas , H. ( 1963 April). On the analysis of high-resolution nuclear magnetic resonance spectra . Mol. Phys . 6 ( 3 ): 225 – 256 ISSN 0026-8976. Sørensen , O.W. , Eich , G.W. , Levitt , M.H. , Bodenhausen , G. and Ernst , R.R. ( 1984 ). Product operator formalism for the description of NMR pulse experiments. Prog. Nucl. Magn. Reson. Spectrosc . 16: 163–192. ISSN 0079-6565. Ernst , R.R. , Bodenhausen , G. and Wokaun , A. ( 1990 September). Principles of Nuclear Magnetic Resonance in One and Two Dimensions , volume 1. Clarendon Press, Oxford. Tjandra , N. and Bax , A. ( 1997 November). Direct Measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science . Cavanagh , J. , Fairbrother , W.J. , Palmer III , A.G. , Rance , M. and Skelton , N.J. ( 2007 ). Protein NMR Spectroscopy. Principles and Practice , 2e . Amsterdam : Elsevier Academic Press . Jeener , J. ( 1982 January). Superoperators in Magnetic Resonance. In: Advances in Magnetic and Optical Resonance , (ed. Waugh, J.S.), volume 10, 1–51. Academic Press. Levitt , M.H. and Bengs , C. ( 2021 June). Hyperpolarization and the physical boundary of Liouville space . Magn. Reson . 2 ( 1 ): 395 – 407 . ISSN 2699-0016. Kuprov , I. ( 2016 September). Fokker-Planck formalism in magnetic resonance simulations. J. Magn. Reson . 270: 124–135. ISSN 1090-7807. Bengs , C. and Levitt , M.H. ( 2020 January). A master equation for spin systems far from equilibrium. J. Magn. Reson . 310: 106645. ISSN 1090-7807. Levitt , M.H. ( 2012 ). Singlet Nuclear Magnetic Resonance . Annu. Rev. Phys. Chem . 63 ( 1 ): 89 – 105 . Carravetta , M. and Levitt , M.H. ( 2004 May). Long-lived nuclear spin states in high-field solution NMR . J. Am. Chem. Soc ., 126 ( 20 ): 6228 – 6229 . ISSN 0002-7863. Maricq , M.M. and Waugh , J.S. ( 1979 April). NMR in rotating solids . J. Chem. Phys . 70 ( 7 ): 3300 – 3316 . ISSN 0021-9606. Hall , D.A. , Maus , D.C. , Gerfen , G.J. , Inati , S.J. , Becerra , L.R. , Dahlquist , F.W. and Griffin , R.G. ( 1997 May). Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution . Science , 276 ( 5314 ): 930 – 932 . ISSN 0036-8075, 1095-9203. Ardenkjaer-Larsen , J.H. , Fridlund , B. , Gram , A. , Hansson , G. , Hansson , L. , Lerche , M.H. , Servin , R. , Thaning , M. and Golman , K. ( 2003 September). Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR . Proc. Natl. Acad. Sci. USA 100 ( 18 ): 10158 – 10163 . Navon , G. , Song , Y.Q. , Room , T. , Appelt , S.T.R.E. , Taylor , R.E. and Pines , A. Enhancement of solution NMR and MRI with laser-polarized xenon . Science 271 ( 5257 ): 1848 – 1851 . ISSN 0036-8075, 1095-9203. Icker , M. and Berger , S. ( 2012 ). Unexpected multiplet patterns induced by the Haupt-effect. J. Magn. Reson . 219 ( 0 ): 1 – 3 . ISSN 1090-7807. Dumez , J.N. , Håkansson , P. , Mamone , S. , Meier , B. , Stevanato , G. , Hill-Cousins , J.T. , Roy , S.S. , Brown , R.C. , Pileio , G. and Levitt , M.H. ( 2015 ). Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation . J. Chem. Phys . 142 ( 4 ): 044506 . Kaptein , R. ( 1972, September ). Chemically induced dynamic nuclear polarization. VIII. Spin dynamics and diffusion of radical pairs . J. Am. Chem. Soc . 94 ( 18 ): 6251 – 6262 . ISSN 0002-7863. Bowers , C.R. and Weitekamp , D.P. ( 1987 September). Parahydrogen and synthesis allow dramatically enhanced nuclear alignment . J. Am. Chem. Soc . 109 ( 18 ): 5541 – 5542 . ISSN 0002-7863. Adams , R.W. , Aguilar , J.A. , Atkinson , K.D. , Cowley , M.J. , Elliott , P.I. , Duckett , S.B. , Green , G.G. , Khazal , I.G. , López-Serrano , J. and Williamson , D.C ( 2009 March). Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer . Science 323 ( 5922 ): 1708 – 1711 . Levitt , M.H. ( 2007 ). Spin Dynamics. Basics of Nuclear Magnetic Resonance . Wiley, Chichester, second edition. ISBN 0-471-48921-2. Tayler , M.C. , Theis , T. , Sjolander , T.F. , Blanchard , J.W. , Kentner , A. , Pustelny , S. , Pines , A. and Budker , D. ( 2017 September). Invited review article: instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field . Rev. Sci. Instrum . 88 ( 9 ): 091101. ISSN 0034-6748. Jiang , M. , Bian , J. , Li , Q. , Wu , Z. , Su , H. , Xu , M. , Wang , Y. , Wang , X. and Peng , X. ( 2021 January). Zero- to ultralow-field nuclear magnetic resonance and its applications. Fundam. Res. 1 ( 1 ): 68 – 84 . ISSN 2667-3258. Jeener , J. and Alewaeters , G. ( 2016 May). “Pulse pair technique in high resolution NMR” a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc . 94–95: 75–80. ISSN 0079-6565. Aue , W.P. , Bartholdi , E. and Ernst , R.R. ( 1976 ). Two-dimensional spectroscopy. Application to nuclear magnetic resonance . J. Chem. Phys . 64 : 2229 . Frydman , L. , Scherf , T. and Lupulescu , A. ( 2002 ). The acquisition of multidimensional NMR spectra within a single scan . Proc. Natl. Acad. Sci. USA 99 ( 25 ): 15858 – 15862 . Dumez , J.N. ( 2018 December). Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc . 109: 101–134. ISSN 0079-6565. States , D.J. , Haberkorn , R.A. and Ruben , D.J. ( 1982 June). A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson. (1969) , 48 ( 2 ): 286 – 292 . ISSN 0022-2364. Wokaun , A. and Ernst , R.R. ( 1978 August). The use of multiple quantum transitions for relaxation studies in coupled spin systems . Mol. Phys . 36 ( 2 ): 317 – 341 . ISSN 0026-8976. Mueller , L. ( 1979 August). Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence . J. Am. Chem. Soc . 101 ( 16 ): 4481 – 4484 . ISSN 0002-7863. Kumar , A. , Welti , D. and Ernst , R.R. ( 1975 April). NMR Fourier zeugmatography . J. Magn. Reson. (1969) , 18 ( 1 ): 69 – 83 . ISSN 0022-2364. Jeener , J.M.B.H. , Meier , B.H. , Bachmann , P. and Ernst , R.R. ( 1979 ). Investigation of exchange processes by 2-dimensional NMR spectroscopy. J. Chem. Phys . 71 ( 11 ): 4546 – 4553 . ISSN 0021-9606. Solomon , I. ( 1955 July). Relaxation processes in a system of two spins . Phys. Rev . 99 ( 2 ): 559 – 565 . Kumar , A. , Ernst , R.R. and Wthrich , K. ( 1980 July). A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules . Biochem. Biophys. Res. Commun . 95 ( 1 ): 1 – 6 . ISSN 0006-291X. Oschkinat , H. , Griesinger , C. , Kraulis , P.J. , Srensen , O.W. , Ernst , R.R. , Gronenborn , A.M. and Clore , G.M. Three-dimensional NMR spectroscopy of a protein in solution . Nature , 332 ( 6162 ): 374 – 376 . ISSN 1476-4687. Bodenhausen , G. ( 2021 January). Early days of two-dimensional ion cyclotron resonance . Molecule , 26 ( 11 ): 3381 . Zanni , M.T. and Hochstrasser , R.M. ( 2001 September). Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures . Curr. Opin. Struct. Biol . 11 ( 5 ): 516 – 522 . ISSN 0959-440X. Cahoon , J.F. , Sawyer , K.R. , Schlegel , J.P. and Harris , C.B. ( 2008 March). Determining transition-state geometries in liquids using 2D-IR. Science . Finneran , I.A. , Welsch , R. , Allodi , M.A. , Miller III , T.F. and Blake , G.A. ( 2016 June). Coherent two-dimensional terahertz-terahertz-Raman spectroscopy . PNAS 113 ( 25 ): 6857 – 6861 . ISSN 0027-8424, 1091-6490. Cho , M. ( 2008 April). Coherent two-dimensional optical spectroscopy . Chem. Rev . 108 ( 4 ): 1331 – 1418 . ISSN 0009-2665. Mukamel , S. ( 2000 October). Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations . Annu. Rev. Phys. Chem . 51 ( 1 ): 691 – 729 . ISSN 0066-426X. Two‐Dimensional (2D) NMR Methods, First ReferencesRelatedInformation