Mechanistic insights into the processes of the initial stage of electrolyte degradation in lithium metal batteries

金属锂 二甲氧基乙烷 电解质 降级(电信) 锂(药物) 分解 溶剂化 阳极 化学 无机化学 材料科学 化学工程 离子 计算机科学 电极 工程类 有机化学 物理化学 医学 电信 内分泌学
作者
Yao Wang,Juncheng Wang,Jianwei Nai,Jianmin Luo,Xinyong Tao,Yujing Liu
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:35 (3): 108510-108510 被引量:2
标识
DOI:10.1016/j.cclet.2023.108510
摘要

The lithium (Li) metal batteries (LMBs) are considered one of the most promising next-generation batteries due to its extremely high theoretical specific capacity. However, there are a couple of issues, e.g., the serious side reactions that occurred at the solid-liquid interface between the electrolyte and Li metal anode, hindering the broad commercialization of LMBs. Thus, a comprehensive understanding of the mechanisms underlying the decomposition of electrolytes is crucial to the design of LMBs. Herein, we utilize density functional theory simulations to explore the decomposition mechanism of electrolytes. The most commonly used ether electrolyte solvents, i.e., 1,2-dimethoxyethane (DME) and 1,3-dioxalane (DOL), based on suitable lithium salts, namely bis(trifluoromethanesulfonyl)imide (LiTFSI), are chosen to model the actual situations. We explicitly demonstrate that an electron-rich environment near the interface accelerates the decomposition of electrolytes. For ether electrolytes, we show that the LiTFSI degradation path is depending on the ratio of DOL to DME. In addition, the solvation structures of lithium-ion undergo a series of transformations upon electrolyte degradation, becoming thermodynamically more favorable and having a higher reduction potential in an electron-rich environment. Our finding provides new insights into the decomposition mechanisms of electrolytes and paves the way for the rational design of high-performance LMBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mouxq发布了新的文献求助10
1秒前
清脆的初蝶完成签到,获得积分10
1秒前
空城旧梦发布了新的文献求助10
1秒前
1秒前
2秒前
精神世界完成签到,获得积分10
2秒前
2秒前
上官若男应助叶长安采纳,获得10
2秒前
ding应助自然的菠萝采纳,获得10
2秒前
zhang发布了新的文献求助10
3秒前
candleshi完成签到,获得积分10
3秒前
Xu发布了新的文献求助10
3秒前
freebird应助会飞的鱼采纳,获得10
3秒前
4秒前
跳跃飞瑶发布了新的文献求助10
4秒前
4秒前
4秒前
温暖的颜演完成签到 ,获得积分10
5秒前
Hello应助Mininine采纳,获得10
5秒前
5秒前
自觉的香彤完成签到,获得积分10
5秒前
6秒前
Orange应助达奚多思采纳,获得10
6秒前
6秒前
贾硕士发布了新的文献求助10
6秒前
太阳能之子完成签到,获得积分10
6秒前
ZCM关闭了ZCM文献求助
6秒前
7秒前
繁星完成签到,获得积分10
7秒前
一颗苹果完成签到 ,获得积分10
7秒前
超帅的遥发布了新的文献求助10
7秒前
生信好难完成签到,获得积分10
8秒前
8秒前
小苏打完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
Sumengyan发布了新的文献求助10
10秒前
Lucas应助自觉的香彤采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285