Predicting the negative conversion time of nonsevere COVID‐19 patients using machine learning methods

Lasso(编程语言) 人工智能 回归分析 机器学习 支持向量机 医学 2019年冠状病毒病(COVID-19) 线性回归 试验装置 接种疫苗 内科学 免疫学 计算机科学 疾病 万维网 传染病(医学专业)
作者
Jiru Ye,Xiaonan Shao,Yong Ryoul Yang,Feng Zhu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:95 (4) 被引量:3
标识
DOI:10.1002/jmv.28747
摘要

Based on the patient's clinical characteristics and laboratory indicators, different machine-learning methods were used to develop models for predicting the negative conversion time of nonsevere coronavirus disease 2019 (COVID-19) patients. A retrospective analysis was performed on 376 nonsevere COVID-19 patients admitted to Wuxi Fifth People's Hospital from May 2, 2022, to May 14, 2022. The patients were divided into training set (n = 309) and test set (n = 67). The clinical features and laboratory parameters of the patients were collected. In the training set, the least absolute shrinkage and selection operator (LASSO) was used to select predictive features and train six machine learning models: multiple linear regression (MLR), K-Nearest Neighbors Regression (KNNR), random forest regression (RFR), support vector machine regression (SVR), XGBoost regression (XGBR), and multilayer perceptron regression (MLPR). Seven best predictive features selected by LASSO included: age, gender, vaccination status, IgG, lymphocyte ratio, monocyte ratio, and lymphocyte count. The predictive performance of the models in the test set was MLPR > SVR > MLR > KNNR > XGBR > RFR, and MLPR had the strongest generalization performance, which is significantly better than SVR and MLR. In the MLPR model, vaccination status, IgG, lymphocyte count, and lymphocyte ratio were protective factors for negative conversion time; male gender, age, and monocyte ratio were risk factors. The top three features with the highest weights were vaccination status, gender, and IgG. Machine learning methods (especially MLPR) can effectively predict the negative conversion time of non-severe COVID-19 patients. It can help to rationally allocate limited medical resources and prevent disease transmission, especially during the Omicron pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张英俊发布了新的文献求助10
1秒前
1秒前
2秒前
Lucas应助leng采纳,获得10
3秒前
叶子完成签到,获得积分10
3秒前
打打应助熬夜的桃子采纳,获得10
3秒前
4秒前
5秒前
5秒前
星辰大海应助左岸采纳,获得10
5秒前
xyz完成签到,获得积分10
5秒前
5秒前
6秒前
李66发布了新的文献求助10
7秒前
小蘑菇应助橙子采纳,获得10
7秒前
奔流的河发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
YYC发布了新的文献求助10
8秒前
8秒前
传奇3应助wayhome采纳,获得10
9秒前
是玥玥啊发布了新的文献求助10
10秒前
完美的皮卡丘完成签到 ,获得积分10
11秒前
11秒前
12秒前
lee1992发布了新的文献求助10
13秒前
13秒前
liyu发布了新的文献求助10
14秒前
汉堡包应助clement采纳,获得30
14秒前
青木聪聪完成签到,获得积分10
14秒前
香蕉觅云应助文静采纳,获得10
14秒前
15秒前
高兴白莲完成签到,获得积分10
15秒前
壮观的衫完成签到,获得积分10
16秒前
烟花应助旋律采纳,获得10
17秒前
汉堡包应助奋斗的紫霜采纳,获得10
17秒前
涂上小张完成签到,获得积分10
17秒前
温柔宛儿发布了新的文献求助10
17秒前
轻松曲奇完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813