Predicting the negative conversion time of nonsevere COVID‐19 patients using machine learning methods

Lasso(编程语言) 人工智能 回归分析 机器学习 支持向量机 医学 2019年冠状病毒病(COVID-19) 线性回归 试验装置 接种疫苗 内科学 免疫学 计算机科学 疾病 万维网 传染病(医学专业)
作者
Jiru Ye,Xiaonan Shao,Yong Ryoul Yang,Feng Zhu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:95 (4) 被引量:3
标识
DOI:10.1002/jmv.28747
摘要

Based on the patient's clinical characteristics and laboratory indicators, different machine-learning methods were used to develop models for predicting the negative conversion time of nonsevere coronavirus disease 2019 (COVID-19) patients. A retrospective analysis was performed on 376 nonsevere COVID-19 patients admitted to Wuxi Fifth People's Hospital from May 2, 2022, to May 14, 2022. The patients were divided into training set (n = 309) and test set (n = 67). The clinical features and laboratory parameters of the patients were collected. In the training set, the least absolute shrinkage and selection operator (LASSO) was used to select predictive features and train six machine learning models: multiple linear regression (MLR), K-Nearest Neighbors Regression (KNNR), random forest regression (RFR), support vector machine regression (SVR), XGBoost regression (XGBR), and multilayer perceptron regression (MLPR). Seven best predictive features selected by LASSO included: age, gender, vaccination status, IgG, lymphocyte ratio, monocyte ratio, and lymphocyte count. The predictive performance of the models in the test set was MLPR > SVR > MLR > KNNR > XGBR > RFR, and MLPR had the strongest generalization performance, which is significantly better than SVR and MLR. In the MLPR model, vaccination status, IgG, lymphocyte count, and lymphocyte ratio were protective factors for negative conversion time; male gender, age, and monocyte ratio were risk factors. The top three features with the highest weights were vaccination status, gender, and IgG. Machine learning methods (especially MLPR) can effectively predict the negative conversion time of non-severe COVID-19 patients. It can help to rationally allocate limited medical resources and prevent disease transmission, especially during the Omicron pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赤邪发布了新的文献求助10
刚刚
石头发布了新的文献求助10
刚刚
1秒前
Ricky完成签到,获得积分10
1秒前
上官若男应助luuuuuu采纳,获得10
1秒前
杨永亮完成签到,获得积分10
2秒前
2秒前
袁粪到了完成签到 ,获得积分10
2秒前
2秒前
异烟肼完成签到 ,获得积分10
2秒前
Jenny应助通~采纳,获得10
2秒前
yory完成签到 ,获得积分10
3秒前
3秒前
远航完成签到 ,获得积分10
3秒前
3秒前
彭于晏应助Rrr采纳,获得10
3秒前
卓然发布了新的文献求助10
3秒前
精明的中蓝完成签到,获得积分10
4秒前
66应助小钻风采纳,获得10
4秒前
4秒前
领导范儿应助星星采纳,获得10
5秒前
汉堡包应助shotgod采纳,获得10
5秒前
如寄完成签到 ,获得积分10
5秒前
顾闭月发布了新的文献求助10
6秒前
研友_VZG7GZ应助石头采纳,获得10
6秒前
有益发布了新的文献求助10
7秒前
xibei完成签到 ,获得积分10
7秒前
8秒前
丘比特应助爱吃肉的猪采纳,获得10
8秒前
8秒前
8秒前
dyh6802发布了新的文献求助10
8秒前
9秒前
Wxx完成签到 ,获得积分10
9秒前
七栀完成签到,获得积分10
9秒前
科研通AI2S应助阿芙乐尔采纳,获得10
11秒前
一条贤与完成签到,获得积分20
11秒前
12秒前
12秒前
yl完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794