Predicting the negative conversion time of nonsevere COVID‐19 patients using machine learning methods

Lasso(编程语言) 人工智能 回归分析 机器学习 支持向量机 医学 2019年冠状病毒病(COVID-19) 线性回归 试验装置 接种疫苗 内科学 免疫学 计算机科学 疾病 万维网 传染病(医学专业)
作者
Jiru Ye,Xiaonan Shao,Yong Ryoul Yang,Feng Zhu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:95 (4) 被引量:3
标识
DOI:10.1002/jmv.28747
摘要

Based on the patient's clinical characteristics and laboratory indicators, different machine-learning methods were used to develop models for predicting the negative conversion time of nonsevere coronavirus disease 2019 (COVID-19) patients. A retrospective analysis was performed on 376 nonsevere COVID-19 patients admitted to Wuxi Fifth People's Hospital from May 2, 2022, to May 14, 2022. The patients were divided into training set (n = 309) and test set (n = 67). The clinical features and laboratory parameters of the patients were collected. In the training set, the least absolute shrinkage and selection operator (LASSO) was used to select predictive features and train six machine learning models: multiple linear regression (MLR), K-Nearest Neighbors Regression (KNNR), random forest regression (RFR), support vector machine regression (SVR), XGBoost regression (XGBR), and multilayer perceptron regression (MLPR). Seven best predictive features selected by LASSO included: age, gender, vaccination status, IgG, lymphocyte ratio, monocyte ratio, and lymphocyte count. The predictive performance of the models in the test set was MLPR > SVR > MLR > KNNR > XGBR > RFR, and MLPR had the strongest generalization performance, which is significantly better than SVR and MLR. In the MLPR model, vaccination status, IgG, lymphocyte count, and lymphocyte ratio were protective factors for negative conversion time; male gender, age, and monocyte ratio were risk factors. The top three features with the highest weights were vaccination status, gender, and IgG. Machine learning methods (especially MLPR) can effectively predict the negative conversion time of non-severe COVID-19 patients. It can help to rationally allocate limited medical resources and prevent disease transmission, especially during the Omicron pandemic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西大喜完成签到,获得积分10
1秒前
2秒前
英俊的铭应助姚昂采纳,获得10
2秒前
2秒前
2秒前
susiex完成签到,获得积分10
3秒前
安详夏彤发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
波谷完成签到,获得积分10
3秒前
3秒前
研友_ndDjBn发布了新的文献求助10
3秒前
Betsy完成签到 ,获得积分10
4秒前
bai发布了新的文献求助10
4秒前
5秒前
一百度黑发布了新的文献求助10
5秒前
6秒前
JNuidcyk完成签到,获得积分10
7秒前
8秒前
花里尘发布了新的文献求助10
8秒前
CCY777发布了新的文献求助10
11秒前
11秒前
11秒前
刻苦惜萍发布了新的文献求助10
11秒前
位伟发布了新的文献求助10
12秒前
鲨鱼完成签到,获得积分10
12秒前
Hello应助lft361采纳,获得30
13秒前
13秒前
yanying_shc完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
充电宝应助灰哩采纳,获得10
15秒前
小马甲应助迷路枫采纳,获得10
15秒前
luluan发布了新的文献求助10
16秒前
bai完成签到,获得积分10
16秒前
在水一方应助张志超采纳,获得10
17秒前
团子好无情完成签到 ,获得积分10
17秒前
香山叶正红完成签到 ,获得积分10
17秒前
科研通AI6应助研友_ndDjBn采纳,获得10
17秒前
科研通AI6应助研友_ndDjBn采纳,获得10
17秒前
Ava应助刻苦惜萍采纳,获得10
17秒前
芊芊君子完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836