Predicting the negative conversion time of nonsevere COVID‐19 patients using machine learning methods

Lasso(编程语言) 人工智能 回归分析 机器学习 支持向量机 医学 2019年冠状病毒病(COVID-19) 线性回归 试验装置 接种疫苗 内科学 免疫学 计算机科学 疾病 万维网 传染病(医学专业)
作者
Jiru Ye,Xiaonan Shao,Yong Ryoul Yang,Feng Zhu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:95 (4) 被引量:3
标识
DOI:10.1002/jmv.28747
摘要

Based on the patient's clinical characteristics and laboratory indicators, different machine-learning methods were used to develop models for predicting the negative conversion time of nonsevere coronavirus disease 2019 (COVID-19) patients. A retrospective analysis was performed on 376 nonsevere COVID-19 patients admitted to Wuxi Fifth People's Hospital from May 2, 2022, to May 14, 2022. The patients were divided into training set (n = 309) and test set (n = 67). The clinical features and laboratory parameters of the patients were collected. In the training set, the least absolute shrinkage and selection operator (LASSO) was used to select predictive features and train six machine learning models: multiple linear regression (MLR), K-Nearest Neighbors Regression (KNNR), random forest regression (RFR), support vector machine regression (SVR), XGBoost regression (XGBR), and multilayer perceptron regression (MLPR). Seven best predictive features selected by LASSO included: age, gender, vaccination status, IgG, lymphocyte ratio, monocyte ratio, and lymphocyte count. The predictive performance of the models in the test set was MLPR > SVR > MLR > KNNR > XGBR > RFR, and MLPR had the strongest generalization performance, which is significantly better than SVR and MLR. In the MLPR model, vaccination status, IgG, lymphocyte count, and lymphocyte ratio were protective factors for negative conversion time; male gender, age, and monocyte ratio were risk factors. The top three features with the highest weights were vaccination status, gender, and IgG. Machine learning methods (especially MLPR) can effectively predict the negative conversion time of non-severe COVID-19 patients. It can help to rationally allocate limited medical resources and prevent disease transmission, especially during the Omicron pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lc339完成签到,获得积分10
刚刚
刚刚
Tache完成签到,获得积分10
刚刚
刚刚
1秒前
wangxin完成签到,获得积分20
2秒前
今后应助温乘云采纳,获得10
2秒前
2秒前
漂流关注了科研通微信公众号
4秒前
天真的邴发布了新的文献求助10
4秒前
王润完成签到,获得积分10
5秒前
daishuheng完成签到 ,获得积分10
5秒前
Metastasis发布了新的文献求助10
5秒前
Garry发布了新的文献求助10
5秒前
太阳完成签到,获得积分10
6秒前
7秒前
8秒前
r921192发布了新的文献求助10
9秒前
9秒前
10秒前
111发布了新的文献求助10
12秒前
Doctor.Xie完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
heart发布了新的文献求助10
16秒前
温乘云发布了新的文献求助10
18秒前
18秒前
19秒前
六八发布了新的文献求助10
19秒前
一星如月完成签到,获得积分10
21秒前
茄丁捞面发布了新的文献求助10
22秒前
复杂的小翠完成签到,获得积分20
23秒前
老詹头应助唯一采纳,获得10
23秒前
24秒前
David完成签到,获得积分10
26秒前
samifranco完成签到,获得积分20
26秒前
26秒前
Cryo完成签到,获得积分10
27秒前
情怀应助MHY采纳,获得10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706