硫丹
秀丽隐杆线虫
生物
基因组
生殖细胞
突变
遗传学
DNA损伤
基因
杀虫剂
DNA
农学
作者
Zhenxiao Cao,Meimei Wang,Tong Zhou,An Xu,Hua Du
标识
DOI:10.1021/acs.est.2c06817
摘要
Endosulfan is an extensively used organochlorine pesticide around the world, which was classified as a persistent organic pollutant (POP) in 2009. Although previous studies have documented the reproductive toxicity of endosulfan in a variety of organisms, little is known about the influence of endosulfan on the genome stability of germ cells and nonexposed progeny. Here we applied whole-genome sequencing to explore the germ cell mutagenicity of α-endosulfan in Caenorhabditis elegans (C. elegans). We found that, although low doses of α-endosulfan exhibited a minor effect on the reproductive capacity of C. elegans, chronic exposure to 1 μM α-endosulfan significantly increased the mutation frequencies of nonexposed progeny. Further analysis of genome-wide mutation spectra demonstrated that α-endosulfan preferentially elicited A:T → G:C substitutions and clustered mutations. By using worms deficient in DNA damage response genes, our results suggest the involvement of translesion synthesis polymerase η in modulating α-endosulfan-induced mutations in germ cells. Together, these observations reveal the germ cell mutagenicity of α-endosulfan in C. elegans and the possible underlying mechanism. In addition, our findings implicate that germ cell mutagenicity might be a necessary consideration for the health risk assessment of environmental chemicals such as POPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI