The use of artificial intelligence and big data for the safety evaluation of US food-relevant chemicals

食品安全 农药残留 食品添加剂 危害分析 食品接触材料 暴露评估 危险分析和关键控制点 代理(哲学) 杀虫剂 业务 食品包装 化学 食品科学 工程类 环境卫生 生物 医学 认识论 哲学 航空航天工程 农学
作者
Yuqi Fu,Thomas Luechtefeld,Agnes L. Karmaus,Thomas Härtung
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 575-589 被引量:2
标识
DOI:10.1016/b978-0-12-819470-6.00061-5
摘要

Environmental contaminants, naturally occurring toxicants, pesticide residues, and food additives are the four chemical-associated categories of six for food safety established by the Food and Drug Administration. The direct food additives, which are intentionally added to food, are the main focus of this case study, and the indirect food additives, such as pesticides, natural toxicants, and environmental residues will also be discussed. This study is attempting to investigate how artificial intelligence tools developed using big data could support the hazard evaluation of food additives. Automated read-across technology, that is, the read-across-based structure activity relationships (RASAR) tool, was utilized to generate predictions, which were compared with traditional animal testing methods to assess utility for providing estimates of chemical toxicity for food-relevant substances. This was conducted using Underwriters Laboratories (UL) Cheminformatics Tool Kit followed by descriptive statistics and performance-based validation with datasets retrieved from sources such as the European Chemicals Agency, the US Environmental Protection Agency, the Occupational Safety and Health Administration, the European Food Safety Authority, and other literature. In our analysis, the main findings indicate that more direct food additives than indirect food additives are in the training data and there were more non-toxicants than toxicants, which was expected for food-related substances. Most results were at “very strong” and “strong” reliability level. For 123 cases, where classifications could be retrieved from other sources for a preliminary validation, 83% of the RASAR results matched with the toxicological assessment results confirming that in silico tools can robustly generate predictions for informing on the potential of food-use chemical toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒲云海发布了新的文献求助10
3秒前
华仔应助简单的凝蕊采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
清脆松完成签到,获得积分10
4秒前
hehehe完成签到,获得积分10
7秒前
8秒前
9秒前
彩虹发布了新的文献求助10
10秒前
hhhhh发布了新的文献求助10
11秒前
NexusExplorer应助吕小布采纳,获得10
12秒前
可可完成签到 ,获得积分10
12秒前
意志力发布了新的文献求助10
13秒前
13秒前
13秒前
木头人应助精明问筠采纳,获得10
13秒前
木头人应助精明问筠采纳,获得10
13秒前
愉快的孤晴完成签到,获得积分10
14秒前
文静千凡发布了新的文献求助10
15秒前
17秒前
18秒前
18秒前
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
ok应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
安于心发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
全蛋857发布了新的文献求助10
25秒前
思源应助ruby采纳,获得10
25秒前
wen完成签到,获得积分10
27秒前
干净千青发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309