废水
急性毒性
降级(电信)
化学
环境化学
臭氧
过硫酸盐
污水处理
毒性
制浆造纸工业
环境工程
环境科学
有机化学
催化作用
电信
计算机科学
工程类
作者
Guihua Dong,Bing Chen,Bo Liu,Yiqi Cao,Benjamin de Jourdan,Stanislav R. Stoyanov,Jingjing Ling,Xudong Ye,Kenneth Lee,Baiyu Zhang
出处
期刊:Water Research
[Elsevier]
日期:2022-10-10
卷期号:226: 119234-119234
被引量:33
标识
DOI:10.1016/j.watres.2022.119234
摘要
Efficient on-site treatment technology is crucial for mitigating marine oily wastewater pollution. This work investigates the ozone (O3), ultraviolet (UV)/O3, UV/O3/persulfate (PS) processes for the treatment of marine oily wastewater, including degradation performance, acute toxicity evaluation, and oil flocs analysis in a benchtop circulating flow photoozonation reactor. Degradation performances have been studied by measuring the degradation rate of total oil concentrations, specific oil components (n-alkanes and polycyclic aromatic hydrocarbons (PAHs)), and total organic carbon (TOC). The results show that UV/O3/PS could significantly enhance the removal efficiency than the other two processes, with above 90% of removal efficiency in 30 min. Acute toxicity analysis further shows that the wastewater quality is significantly improved by four-fold of the EC50 of Vibrio fischeri, and the mortality of Artemia franciscana decreases from 100% to 0% after 48 h exposure. Further, the morphology and functional groups of flocs have been further characterized, showing that the floating flocs could be further degraded especially in UV/O3/PS process. Our study further raised discussions regarding the future on-site application of O3-based systems, based on the results generated from the treatment efficiency, toxicity, and flocs characterization. The regulation of the oxidation strength and optimization of the reaction systems could be a practical strategy for on-site marine oily wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI