An Empirical Analysis of the Impact of Digital Economy on Manufacturing Green and Low-Carbon Transformation under the Dual-Carbon Background in China

低碳经济 面板数据 数字化转型 制造业 温室气体 中国 数字化制造 碳纤维 环境经济学 经济 产业组织 业务 计量经济学 计算机科学 运营管理 生态学 算法 营销 万维网 政治学 复合数 法学 生物
作者
Wei Zhang,Hao Zhou,Jie Chen,Zifu Fan
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:19 (20): 13192-13192 被引量:44
标识
DOI:10.3390/ijerph192013192
摘要

The deep integration of digital economy and green development has become an inevitable requirement and an important aid in achieving the goal of carbon peaking and carbon neutrality and promoting high-quality economic development. At the same time, the manufacturing industry is the main sector of energy consumption and carbon emissions in China and the main force for achieving the carbon peaking and carbon neutrality goals. This paper constructs a mathematical model to measure the scale of the digital economy development and the efficiency of the green, low-carbon transformation of the manufacturing industry. It builds a panel data model to study the effect of the development of the digital economy on the green, low-carbon transformation of the manufacturing industry based on data of 30 Chinese provinces from 2016 to 2020. The results find that (1) there is a significant positive effect of the digital economy on the green, low-carbon transformation of the manufacturing industry, with an impact coefficient of 0.477, and this finding remains significant in the robustness test. (2) A further test of the mediating effect finds that the digital economy can drive the green, low-carbon transformation of the manufacturing industry by enhancing technological innovation, and it shows a partial mediating effect that accounts for 28% of the total effect. (3) In the regional heterogeneity analysis, it is found that the effect of the digital economy in promoting manufacturing transformation is more prominent in the central region, and the impact coefficients are 0.684, 0.806, 0.340, and 0.392 for the east, central, west, and northeast regions, respectively. This study can provide a theoretical basis and policy support for governments and enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pan完成签到,获得积分10
2秒前
粗犷的凌兰应助燕子采纳,获得30
2秒前
3秒前
Carpe发布了新的文献求助10
3秒前
yusheng完成签到,获得积分10
4秒前
6秒前
核桃完成签到,获得积分0
6秒前
okokk完成签到,获得积分10
6秒前
yusheng发布了新的文献求助10
8秒前
liu完成签到,获得积分10
11秒前
13秒前
Carpe完成签到,获得积分20
13秒前
略略略完成签到,获得积分10
14秒前
14秒前
852应助liu采纳,获得10
14秒前
yolo完成签到,获得积分10
15秒前
Ava应助adfadf采纳,获得10
15秒前
萧水白应助fountainli采纳,获得10
15秒前
咸鱼好闲完成签到 ,获得积分10
16秒前
xxx完成签到,获得积分20
16秒前
狂野谷冬完成签到,获得积分10
16秒前
qjy完成签到,获得积分10
16秒前
yznfly应助张张采纳,获得30
17秒前
牛文文发布了新的文献求助10
18秒前
殷启维发布了新的文献求助10
18秒前
yznfly应助kyo采纳,获得80
18秒前
打打应助狂野谷冬采纳,获得10
21秒前
21秒前
kk发布了新的文献求助10
21秒前
zyz完成签到,获得积分10
23秒前
lcz完成签到,获得积分10
23秒前
CyrusSo524发布了新的文献求助30
25秒前
25秒前
25秒前
26秒前
Lucas应助眼角流星采纳,获得10
27秒前
轻松峻熙完成签到,获得积分10
27秒前
28秒前
行萱完成签到 ,获得积分10
31秒前
smottom应助儞是哪个采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388