Experimental investigation on the ductile machinability of fused silica during in-situ laser assisted diamond cutting

材料科学 可加工性 金刚石车削 钻石 机械加工 激光器 延展性(地球科学) 激光功率缩放 脆性 复合材料 金刚石切割 光学 冶金 蠕动 物理
作者
Chuangting Lin,Xiao Chen,Wenbin He,Guang Xu,Changlin Liu,Jianguo Zhang,Jianfeng Xu
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 383-393 被引量:6
标识
DOI:10.1016/j.jmapro.2022.10.005
摘要

Fused silica finds widespread applications in optical equipment; nevertheless, the machining of fused silica to obtain high-quality surfaces was a common problem in the industry. In-situ laser assisted diamond cutting (LADC) is a promising process for machining hard and brittle materials. In this study, systematic numerical analysis and experiments were conducted to investigate the ductile machinability of fused silica in in-situ LADC. The laser beam path and power density passing through the diamond tool were determined through optical simulation. The corresponding laser heating experiment of fused silica was carried out using the finite element (FE) simulation, aiming to derive the temperature distribution under different laser power levels. The comparison between the temperature values obtained experimentally and those predicted by the FE simulation confirmed the high accuracy of the developed FE model. The influence of laser power on the ductile machinability of fused silica was investigated quantitatively through grooving and end face turning experiments. The experimental results have shown that the ductility and machinability of fused silica under in-situ LADC were improved. With the laser assistance, the critical depth of cut (DOC) was increased up to 294.9 %, from 82.06 nm to 324.03 nm. Compared to conventional single point diamond turning, a significant improvement in the surface quality was obtained, resulting in the formation of a smooth and homogenous surface with a Sa of 19.4 nm for a laser power of 11 W.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助杰尼龟采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
范先生发布了新的文献求助10
3秒前
4秒前
小柒发布了新的文献求助10
4秒前
4秒前
5秒前
丹青发布了新的文献求助10
6秒前
所所应助王红玉采纳,获得30
8秒前
8秒前
9秒前
9秒前
augenstern完成签到,获得积分10
9秒前
花小生发布了新的文献求助20
11秒前
11秒前
Belief完成签到 ,获得积分10
11秒前
12秒前
羊羊完成签到,获得积分10
12秒前
Zl完成签到,获得积分10
13秒前
一二完成签到,获得积分10
13秒前
杰尼龟发布了新的文献求助10
13秒前
ding应助某宁采纳,获得10
13秒前
13秒前
13秒前
wr发布了新的文献求助20
14秒前
14秒前
科研通AI2S应助cmc12314采纳,获得10
14秒前
科研通AI2S应助丹青采纳,获得10
16秒前
16秒前
17秒前
缥缈的初阳完成签到,获得积分10
17秒前
杰尼龟完成签到,获得积分10
18秒前
天天快乐应助顺心绮兰采纳,获得10
18秒前
欧阳宇完成签到,获得积分10
19秒前
打打应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608