亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Prognostic Factors and Molecular Subtypes of Breast Cancer With a Continuous‐Time Random‐Walk MR Diffusion Model: Using Whole Tumor Histogram Analysis

直方图 医学 有效扩散系数 乳腺癌 核医学 接收机工作特性 孕酮受体 肿瘤科 内科学 病理 癌症 雌激素受体 数学 放射科 磁共振成像 人工智能 计算机科学 图像(数学)
作者
Yanjin Qin,Caili Tang,Qilan Hu,Jingru Yi,Ting Yin,Tao Ai
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (1): 93-105 被引量:18
标识
DOI:10.1002/jmri.28474
摘要

Background The continuous‐time random‐walk (CTRW) diffusion model to evaluate breast cancer prognosis is rarely reported. Purpose To investigate the correlations between apparent diffusion coefficient (ADC) and CTRW‐specific parameters with prognostic factors and molecular subtypes of breast cancer. Study Type Retrospective. Population One hundred fifty‐seven women (median age, 50 years; range, 26–81 years) with histopathology‐confirmed breast cancer. Field Strength/Sequence Simultaneous multi‐slice readout‐segmented echo‐planar imaging at 3.0T. Assessment The histogram metrics of ADC, anomalous diffusion coefficient ( D ), temporal diffusion heterogeneity ( α ), and spatial diffusion heterogeneity ( β ) were calculated for whole‐tumor volume. Associations between histogram metrics and prognostic factors (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2], and Ki‐67 proliferation index), axillary lymph node metastasis (ALNM), and tumor grade were assessed. The performance of histogram metrics, both alone and in combination, for differentiating molecular subtypes (HER2‐positive, Luminal or triple negative) was also assessed. Statistical Tests Comparisons were made using Mann–Whitney test between different prognostic factor statuses and molecular subtypes. Receiver operating characteristic curve analysis was used to assess the performance of mean and median histogram metrics in differentiating the molecular subtypes. A P value <0.05 was considered statistically significant. Results The histogram metrics of ADC, D , and α differed significantly between ER‐positive and ER‐negative status, and between PR‐positive and PR‐negative status. The histogram metrics of ADC, D , α , and β were also significantly different between the HER2‐positive and HER2‐negative subgroups, and between ALNM‐positive and ALNM‐negative subgroups. The histogram metrics of α and β significantly differed between high and low Ki‐67 proliferation subgroups, and between histological grade subgroups. The combination of α mean and β mean achieved the highest performance (AUC = 0.702) to discriminate the Luminal and HER2‐positive subtypes. Data Conclusion Whole‐tumor histogram analysis of the CTRW model has potential to provide additional information on the prognosis and intrinsic subtyping classification of breast cancer. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极鸵鸟完成签到,获得积分10
刚刚
1秒前
2秒前
水牛完成签到,获得积分10
3秒前
zrm完成签到,获得积分10
5秒前
5秒前
万能图书馆应助杭三问采纳,获得10
8秒前
坦率的义晶完成签到,获得积分10
8秒前
light完成签到,获得积分10
10秒前
WebCasa发布了新的文献求助100
11秒前
希望天下0贩的0应助123采纳,获得10
11秒前
崔灿完成签到 ,获得积分10
19秒前
yyyyyy完成签到 ,获得积分10
19秒前
VDC完成签到,获得积分0
21秒前
大个应助Anxietymaker采纳,获得10
22秒前
ztl完成签到 ,获得积分10
24秒前
24秒前
25秒前
26秒前
斯文败类应助务实的访卉采纳,获得10
27秒前
27秒前
Lilyan发布了新的文献求助10
28秒前
VDC发布了新的文献求助10
29秒前
赘婿应助123采纳,获得10
29秒前
YJ发布了新的文献求助10
34秒前
Tangwz完成签到,获得积分10
35秒前
虚心的不二完成签到 ,获得积分10
37秒前
映冬完成签到 ,获得积分10
38秒前
39秒前
Anxietymaker发布了新的文献求助10
42秒前
彭于晏应助123采纳,获得10
44秒前
Marciu33发布了新的文献求助10
50秒前
在学海中挣扎完成签到 ,获得积分10
50秒前
动听的秋白完成签到 ,获得积分10
52秒前
asdfzxcv完成签到 ,获得积分0
52秒前
GGBond完成签到 ,获得积分10
57秒前
SciGPT应助123采纳,获得10
59秒前
1分钟前
思源应助坦率的义晶采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657768
求助须知:如何正确求助?哪些是违规求助? 4812247
关于积分的说明 15080301
捐赠科研通 4815972
什么是DOI,文献DOI怎么找? 2577008
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490548