Assessment of Prognostic Factors and Molecular Subtypes of Breast Cancer With a Continuous‐Time Random‐Walk MR Diffusion Model: Using Whole Tumor Histogram Analysis

直方图 医学 有效扩散系数 乳腺癌 核医学 接收机工作特性 孕酮受体 肿瘤科 内科学 病理 癌症 雌激素受体 数学 放射科 磁共振成像 人工智能 计算机科学 图像(数学)
作者
Yanjin Qin,Caili Tang,Qilan Hu,Jingru Yi,Ting Yin,Tao Ai
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (1): 93-105 被引量:18
标识
DOI:10.1002/jmri.28474
摘要

Background The continuous‐time random‐walk (CTRW) diffusion model to evaluate breast cancer prognosis is rarely reported. Purpose To investigate the correlations between apparent diffusion coefficient (ADC) and CTRW‐specific parameters with prognostic factors and molecular subtypes of breast cancer. Study Type Retrospective. Population One hundred fifty‐seven women (median age, 50 years; range, 26–81 years) with histopathology‐confirmed breast cancer. Field Strength/Sequence Simultaneous multi‐slice readout‐segmented echo‐planar imaging at 3.0T. Assessment The histogram metrics of ADC, anomalous diffusion coefficient ( D ), temporal diffusion heterogeneity ( α ), and spatial diffusion heterogeneity ( β ) were calculated for whole‐tumor volume. Associations between histogram metrics and prognostic factors (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2], and Ki‐67 proliferation index), axillary lymph node metastasis (ALNM), and tumor grade were assessed. The performance of histogram metrics, both alone and in combination, for differentiating molecular subtypes (HER2‐positive, Luminal or triple negative) was also assessed. Statistical Tests Comparisons were made using Mann–Whitney test between different prognostic factor statuses and molecular subtypes. Receiver operating characteristic curve analysis was used to assess the performance of mean and median histogram metrics in differentiating the molecular subtypes. A P value <0.05 was considered statistically significant. Results The histogram metrics of ADC, D , and α differed significantly between ER‐positive and ER‐negative status, and between PR‐positive and PR‐negative status. The histogram metrics of ADC, D , α , and β were also significantly different between the HER2‐positive and HER2‐negative subgroups, and between ALNM‐positive and ALNM‐negative subgroups. The histogram metrics of α and β significantly differed between high and low Ki‐67 proliferation subgroups, and between histological grade subgroups. The combination of α mean and β mean achieved the highest performance (AUC = 0.702) to discriminate the Luminal and HER2‐positive subtypes. Data Conclusion Whole‐tumor histogram analysis of the CTRW model has potential to provide additional information on the prognosis and intrinsic subtyping classification of breast cancer. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助白云四季采纳,获得10
1秒前
小九发布了新的文献求助10
2秒前
于丽萍发布了新的文献求助10
2秒前
mikasa完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Square完成签到,获得积分10
4秒前
永不言弃完成签到,获得积分10
5秒前
丁昂霄完成签到 ,获得积分10
5秒前
phy发布了新的文献求助10
7秒前
ding应助Binbin采纳,获得10
8秒前
柳易槐完成签到,获得积分10
8秒前
8秒前
9秒前
12秒前
mikasa发布了新的文献求助10
13秒前
123完成签到,获得积分10
13秒前
宵宫完成签到,获得积分10
14秒前
14秒前
14秒前
迷人书蝶完成签到 ,获得积分10
15秒前
科研通AI6应助加菲丰丰采纳,获得10
15秒前
16秒前
沉静尔曼发布了新的文献求助10
17秒前
18秒前
辛未发布了新的文献求助10
18秒前
一牧牧发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
JamesPei应助de铭采纳,获得10
21秒前
22秒前
炙热的千凝完成签到,获得积分10
22秒前
小新XIAO完成签到,获得积分10
23秒前
思源应助浮浮世世采纳,获得10
24秒前
misaka发布了新的文献求助30
24秒前
laber应助福桃采纳,获得30
25秒前
25秒前
浮游应助文俊伟采纳,获得10
26秒前
笑点低的小霜完成签到 ,获得积分20
26秒前
Binbin发布了新的文献求助10
27秒前
领导范儿应助拓跋慕灵采纳,获得10
28秒前
华仔应助123321采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740