A large-scale group decision-making model with no consensus threshold based on social network analysis

群体决策 计算机科学 聚类分析 相似性(几何) 背景(考古学) 决策分析 人工智能 管理科学 数据挖掘 机器学习 心理学 社会心理学 数学 数理经济学 经济 生物 图像(数学) 古生物学
作者
Xia Liang,Jie Guo,Пэйдэ Лю
出处
期刊:Information Sciences [Elsevier BV]
卷期号:612: 361-383 被引量:51
标识
DOI:10.1016/j.ins.2022.08.075
摘要

Recently, large-scale group decision-making in the social network context has become an attractive research hotspot in decision science. The focus of large-scale group decision-making is how to objectively and reasonably generate a collective opinion accepted by most decision makers. To this end, this study investigates a novel consensus model with no threshold based on social networks. In the model, inspired by the “similarity-attraction paradigm” in psychology, we first propose a novel adjustment method for the trust degree between decision makers. A clustering method that depends on the similarity-trust score between decision makers is presented to reduce the complexity of decision-making. In the consensus reaching process, we provide an approach to managing the overconfident or unconfident behaviour of decision makers. Moreover, the social network DeGroot model is used to adjust the preferences of decision makers in the feedback mechanism. In addition, we design an objective condition to terminate the consensus reaching process. Based on this, the no threshold consensus model is established, which makes the decision results more rational and scientific. Finally, the applicability of the proposed model is demonstrated by an illustrative example. Simulation experiments and comparative analysis illustrate the validity of the proposed model in promoting consensus reaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Wsf应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
1秒前
欣喜靖发布了新的文献求助10
2秒前
风中如天完成签到 ,获得积分10
2秒前
2秒前
cc发布了新的文献求助10
3秒前
852应助impericalWcourt采纳,获得10
3秒前
上章发布了新的文献求助10
3秒前
lm发布了新的文献求助10
3秒前
5秒前
英姑应助茸茸茸采纳,获得30
5秒前
刘豆豆发布了新的文献求助10
5秒前
琪琪发布了新的文献求助10
6秒前
6秒前
7秒前
ldx发布了新的文献求助10
7秒前
8秒前
8秒前
王一一发布了新的文献求助10
10秒前
11秒前
深情安青应助ee采纳,获得10
11秒前
14秒前
jellion发布了新的文献求助10
14秒前
亿只金猪发布了新的文献求助10
14秒前
科研通AI5应助欣喜靖采纳,获得10
15秒前
所所应助刘豆豆采纳,获得10
15秒前
华仔应助霸气的若菱采纳,获得10
16秒前
咚咚咚发布了新的文献求助10
16秒前
ppap完成签到,获得积分10
16秒前
小小发布了新的文献求助10
18秒前
Hello应助zzz采纳,获得10
19秒前
ldx完成签到,获得积分10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727987
求助须知:如何正确求助?哪些是违规求助? 3273063
关于积分的说明 9979754
捐赠科研通 2988453
什么是DOI,文献DOI怎么找? 1639640
邀请新用户注册赠送积分活动 778825
科研通“疑难数据库(出版商)”最低求助积分说明 747819