End-to-end Gesture Recognition Framework for the Identification of Allergic Rhinitis Symptoms

计算机科学 手势 管道(软件) 鉴定(生物学) 领域(数学) 人工智能 可穿戴计算机 机器学习 深度学习 人机交互 手势识别 GSM演进的增强数据速率 数据科学 建筑 嵌入式系统 程序设计语言 纯数学 艺术 视觉艺术 生物 植物 数学
作者
Pantelis Tzamalis,Andreas Bardoutsos,Dimitris Markantonatos,Christoforos Raptopoulos,Sotiris Nikoletseas,Xenophon Aggelides,Nikos Papadopoulos
标识
DOI:10.1109/dcoss54816.2022.00016
摘要

Human Gesture Recognition (HGR) using smart wearable IoT devices has emerged as a new field in human-centered computing regarding various domains. Though there are many research works related to data processing methodologies and Neural Networks architectures in this field, a lack of research on how to efficiently identify and interpret the AI models’ exports into human gestures is observed. This paper proposes an innovative end-to-end approach of how to solve and evaluate effectively a major part of HGR problems in a real-world scenario, in real-time. This is achieved with the effective utilization of data processing methods, the adoption, and extension of a cutting-edge Deep Learning model architecture, as well as the introduction and implementation in practice of innovative methods, both for interpretation and evaluation, that increase the trustworthiness of the model’s predictions.As a case study, we deployed the introduced pipeline into a real-world scenario of gestures’ identification and classification regarding allergic symptoms. We adopted multidisciplinarity by collaborating with recognized allergists that validated the whole approach in real patients via two pilot phases. As a result, by delivering a real-world application of our approach, we achieved a superior performance concerning the reliability of the pipeline, being 91.6% in our laboratory pilot phase and 81.4% in patients’ pilot data. Lastly, it is worth mentioning here that our framework can be employed in most HGR problems with minor modifications in data processing and learning procedure configuration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
LI发布了新的文献求助10
2秒前
公冶笑白发布了新的文献求助200
4秒前
4秒前
好事成双发布了新的文献求助10
4秒前
jike完成签到 ,获得积分10
5秒前
5秒前
阔达棉花糖完成签到 ,获得积分10
5秒前
干净又晴发布了新的文献求助10
5秒前
6秒前
7iy发布了新的文献求助10
7秒前
完美山菡完成签到,获得积分10
7秒前
归雁完成签到,获得积分10
8秒前
9秒前
斯文败类应助七曜采纳,获得10
11秒前
12秒前
博修发布了新的文献求助10
13秒前
13秒前
可可完成签到,获得积分10
14秒前
科研通AI5应助Panda采纳,获得10
15秒前
lh23发布了新的文献求助10
16秒前
绿泡泡发布了新的文献求助10
16秒前
bias完成签到,获得积分10
17秒前
17秒前
我是老大应助咻咻采纳,获得30
17秒前
18秒前
爆米花应助Muhammad采纳,获得10
18秒前
ZhongWenwen完成签到,获得积分10
21秒前
21秒前
完美山菡关注了科研通微信公众号
22秒前
灭杀之紫电完成签到,获得积分10
22秒前
23秒前
大模型应助端庄的冬天采纳,获得10
23秒前
桐桐应助认真跳跳糖采纳,获得10
25秒前
2024dsb完成签到 ,获得积分10
25秒前
蔡忠英发布了新的文献求助10
26秒前
丘比特应助lh23采纳,获得10
26秒前
打打应助LI采纳,获得10
27秒前
研友_VZG7GZ应助熊巴巴采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176