亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Video Capsule Endoscopy Classification using Focal Modulation Guided Convolutional Neural Network

计算机科学 卷积神经网络 胶囊内镜 人工智能 背景(考古学) 深度学习 块(置换群论) 模式识别(心理学) 计算机视觉 放射科 医学 几何学 数学 生物 古生物学
作者
Abhishek Srivastava,Nikhil Kumar Tomar,Ulaş Bağcı,Debesh Jha
标识
DOI:10.1109/cbms55023.2022.00064
摘要

Video capsule endoscopy is a hot topic in computer vision and medicine. Deep learning can have a positive impact on the future of video capsule endoscopy technology. It can improve the anomaly detection rate, reduce physicians' time for screening, and aid in real-world clinical analysis. Computer-Aided diagnosis (CADx) classification system for video capsule endoscopy has shown a great promise for further improvement. For example, detection of cancerous polyp and bleeding can lead to swift medical response and improve the survival rate of the patients. To this end, an automated CADx system must have high throughput and decent accuracy. In this study, we propose FocalConvNet, a focal modulation network integrated with lightweight convolutional layers for the classification of small bowel anatomical landmarks and luminal findings. FocalConvNet leverages focal modulation to attain global context and allows global-local spatial interactions throughout the forward pass. Moreover, the convolutional block with its intrinsic inductive/learning bias and capacity to extract hierarchical features allows our FocalConvNet to achieve favourable results with high throughput. We compare our FocalConvNet with other state-of-the-art (SOTA) on Kvasir-Capsule, a large-scale VCE dataset with 44,228 frames with 13 classes of different anomalies. We achieved the weighted F1-score, recall and Matthews correlation coefficient (MCC) of 0.6734, 0.6373 and 0.2974, respectively, outperforming SOTA methodologies. Further, we obtained the highest throughput of 148.02 images/second rate to establish the potential of FocalConvNet in a real-time clinical environment. The code of the proposed FocalConvNet is available at https://github.com/NoviceMAn-prog/FocalConvNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Yuan采纳,获得10
3秒前
科研通AI5应助方hh采纳,获得50
14秒前
小二郎应助科研通管家采纳,获得10
19秒前
完美世界应助Yuting采纳,获得10
22秒前
23秒前
草木发布了新的文献求助10
28秒前
31秒前
Yuting发布了新的文献求助10
36秒前
43秒前
莉莉丝发布了新的文献求助10
49秒前
草木发布了新的文献求助10
52秒前
莉莉丝完成签到,获得积分10
1分钟前
草木发布了新的文献求助10
1分钟前
1分钟前
1分钟前
anan完成签到 ,获得积分10
1分钟前
Yuan发布了新的文献求助10
1分钟前
酷波er应助黑球采纳,获得10
1分钟前
樱桃猴子完成签到,获得积分10
1分钟前
2分钟前
黑球发布了新的文献求助10
2分钟前
黑球完成签到,获得积分10
2分钟前
2分钟前
方hh发布了新的文献求助50
2分钟前
羊羊发布了新的文献求助10
2分钟前
华仔应助羊羊采纳,获得10
2分钟前
3分钟前
daiyu完成签到,获得积分10
3分钟前
Jasper应助zengxi246采纳,获得10
3分钟前
3分钟前
zengxi246发布了新的文献求助10
3分钟前
善学以致用应助淳恨战士采纳,获得10
3分钟前
4分钟前
淳恨战士发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Perry完成签到,获得积分10
4分钟前
nadia完成签到,获得积分10
5分钟前
Thien应助科研通管家采纳,获得10
6分钟前
Yuan完成签到,获得积分10
6分钟前
7分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725380
求助须知:如何正确求助?哪些是违规求助? 3270333
关于积分的说明 9965539
捐赠科研通 2985342
什么是DOI,文献DOI怎么找? 1637932
邀请新用户注册赠送积分活动 777774
科研通“疑难数据库(出版商)”最低求助积分说明 747215