阿利效应
博格达诺夫-塔肯分岔
数学
分叉
跨临界分岔
分叉理论的生物学应用
相图
干草叉分叉
鞍结分岔
余维数
分岔图
霍普夫分叉
应用数学
异宿分岔
数学分析
统计物理学
控制理论(社会学)
人口
物理
非线性系统
计算机科学
人口学
控制(管理)
量子力学
人工智能
社会学
作者
Biruk Tafesse Mulugeta,Li‐Ping Yu,Qigang Yuan,Jingli Ren
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-08-25
卷期号:28 (3): 1938-1963
被引量:5
标识
DOI:10.3934/dcdsb.2022153
摘要
This manuscript examines the dynamics of a predator-prey model of the Beddington-DeAngelis type with strong Allee effect on prey growth function. Conditions for the existence and equilibria types are established. By taking Allee effect, predation rate of the prey and growth rate of the predator as bifurcation parameters, different potential bifurcations are explored, including codimension one bifurcations: fold bifurcation, transcritical bifurcation, Hopf bifurcation, and codimension two bifurcations: cusp bifurcation, Bogdanov-Takens bifurcation, and Bautin bifurcation. In addition, to confirm the dynamic behavior of the system, bifurcation diagrams are given in different parameter spaces and phase portraits are also presented to provide corresponding interpretation. The findings indicate that the dynamics of our system is much richer than the system with no strong Allee effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI