IDA-MIL: Classification of Glomerular with Spike-like Projections via Multiple Instance Learning with Instance-level Data Augmentation

Spike(软件开发) 计算机科学 人工智能 模式识别(心理学) 投影(关系代数) 特征(语言学) 机器学习 图像(数学) 算法 语言学 软件工程 哲学
作者
Xi Wu,Yilin Chen,Xinyu Li,Xueyu Liu,Yifei Liu,Yongfei Wu,Ming Li,Xiaoshuang Zhou,Chen Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107106-107106 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107106
摘要

Tiny spike-like projections on the basement membrane of glomeruli are the main pathological feature of membranous nephropathy at stage II (MN II), which is the most significant stage for the diagnosis and treatment of renal disease. Pathological technology is the gold standard in the diagnosis of spike-like and other MNs, and automatic classification of spike-like projection is a crucial step in assisting pathologists in their diagnosis. However, owing to hard-to-label spile-like projections and the scarcity of patient data, classification of glomeruli with spike-like projections based on supervised learning methods is a challenging task.To overcome the aforementioned problems, the idea of integrating weakly-supervised learning and data augmentation methods is utilized in designing the classification framework. Specifically, a multiple instance learning with instance-level data augmentation (IDA-MIL) method for the classification of glomeruli with spike-like projections is established in this paper. The proposed classification framework first trains the MIL model on a dataset with image-level labels, and the well-trained MIL model is used to extract instances that include spike-like projections in the whole glomerular image. Then, rather than using an image-level generative adversarial network (ImgGAN), an instance-level generative adversarial network (InsGAN) based on the StyleGAN2-ADA model is trained on the spike-like instances obtained by the MIL model and synthesizes new spike-like projection instances. Finally, the synthesized spike-like instances are extended to the training dataset to further improve the classification performance of MIL.The designed IDA-MIL model is verified and evaluated from two aspects based on the in-house dataset. On the one hand, the performance comparisons between InsGAN and ImgGAN on five metrics, which involve FID, KID, Precision, Recall and IS, show that InsGAN obtains a better score and can synthesize effective spike-like projections. However, the proposed IDA-MIL model achieves the best classification performance with an accuracy of 0.9405. Then, to make nephrologists believe the inference result of the proposed model, we use heatmap technology to visualize the basis of the model inferences and show the top 4 probability spike-like instances per glomerulus. Furthermore, we analyze the correlation between the disease and the proportion of spike-like instances in bags from historical cases.Compared with the ImgGAN, the InsGAN can synthesize natural and varied spike-like projections, which results in the classification performance of the MIL model achieving great improvement by adding synthesized instance samples into the training dataset. The heatmap of spike-like inferences and the proportion of spike-like instances can help nephrologists to make a preliminary reliable diagnosis in clinical practice. This work provides a valuable reference for medical image classification with limited data and small-scale lesions based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GeneYang完成签到,获得积分0
1秒前
Akim应助冷傲藏鸟采纳,获得10
2秒前
小虫虫完成签到,获得积分10
2秒前
666完成签到,获得积分10
2秒前
脑洞疼应助慧海拾穗采纳,获得10
3秒前
3秒前
Miraitowa发布了新的文献求助10
3秒前
yydragen应助犹豫忆灵采纳,获得40
3秒前
shinysparrow应助怕孤单的易形采纳,获得200
3秒前
4秒前
zong240221完成签到 ,获得积分10
4秒前
背后的世开完成签到,获得积分10
5秒前
皇甫佳一完成签到,获得积分10
5秒前
liu123479完成签到,获得积分10
5秒前
6秒前
斑马发布了新的文献求助10
6秒前
7秒前
洋甘菊完成签到,获得积分10
7秒前
共享精神应助2331547774采纳,获得10
7秒前
秋海棠完成签到,获得积分10
8秒前
无限雨南完成签到,获得积分10
8秒前
8秒前
大家好完成签到 ,获得积分10
8秒前
水星完成签到,获得积分10
9秒前
695发布了新的文献求助10
9秒前
9秒前
勤奋的绪完成签到,获得积分10
10秒前
麦克阿宇完成签到,获得积分10
10秒前
124dc发布了新的文献求助10
12秒前
12秒前
starkisses完成签到,获得积分10
12秒前
PROTAC发布了新的文献求助10
12秒前
科目三应助zyp3344采纳,获得10
12秒前
充电宝应助lxy采纳,获得10
13秒前
13秒前
风中道罡发布了新的文献求助10
13秒前
大兵哥完成签到 ,获得积分0
14秒前
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957243
求助须知:如何正确求助?哪些是违规求助? 3503275
关于积分的说明 11112387
捐赠科研通 3234383
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330