IDA-MIL: Classification of Glomerular with Spike-like Projections via Multiple Instance Learning with Instance-level Data Augmentation

Spike(软件开发) 计算机科学 人工智能 模式识别(心理学) 投影(关系代数) 特征(语言学) 机器学习 图像(数学) 算法 语言学 软件工程 哲学
作者
Xi Wu,Yilin Chen,Xinyu Li,Xueyu Liu,Yifei Liu,Yongfei Wu,Ming Li,Xiaoshuang Zhou,Chen Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107106-107106 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107106
摘要

Tiny spike-like projections on the basement membrane of glomeruli are the main pathological feature of membranous nephropathy at stage II (MN II), which is the most significant stage for the diagnosis and treatment of renal disease. Pathological technology is the gold standard in the diagnosis of spike-like and other MNs, and automatic classification of spike-like projection is a crucial step in assisting pathologists in their diagnosis. However, owing to hard-to-label spile-like projections and the scarcity of patient data, classification of glomeruli with spike-like projections based on supervised learning methods is a challenging task.To overcome the aforementioned problems, the idea of integrating weakly-supervised learning and data augmentation methods is utilized in designing the classification framework. Specifically, a multiple instance learning with instance-level data augmentation (IDA-MIL) method for the classification of glomeruli with spike-like projections is established in this paper. The proposed classification framework first trains the MIL model on a dataset with image-level labels, and the well-trained MIL model is used to extract instances that include spike-like projections in the whole glomerular image. Then, rather than using an image-level generative adversarial network (ImgGAN), an instance-level generative adversarial network (InsGAN) based on the StyleGAN2-ADA model is trained on the spike-like instances obtained by the MIL model and synthesizes new spike-like projection instances. Finally, the synthesized spike-like instances are extended to the training dataset to further improve the classification performance of MIL.The designed IDA-MIL model is verified and evaluated from two aspects based on the in-house dataset. On the one hand, the performance comparisons between InsGAN and ImgGAN on five metrics, which involve FID, KID, Precision, Recall and IS, show that InsGAN obtains a better score and can synthesize effective spike-like projections. However, the proposed IDA-MIL model achieves the best classification performance with an accuracy of 0.9405. Then, to make nephrologists believe the inference result of the proposed model, we use heatmap technology to visualize the basis of the model inferences and show the top 4 probability spike-like instances per glomerulus. Furthermore, we analyze the correlation between the disease and the proportion of spike-like instances in bags from historical cases.Compared with the ImgGAN, the InsGAN can synthesize natural and varied spike-like projections, which results in the classification performance of the MIL model achieving great improvement by adding synthesized instance samples into the training dataset. The heatmap of spike-like inferences and the proportion of spike-like instances can help nephrologists to make a preliminary reliable diagnosis in clinical practice. This work provides a valuable reference for medical image classification with limited data and small-scale lesions based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆瓜完成签到,获得积分10
1秒前
CodeCraft应助zhao采纳,获得10
2秒前
小袁发布了新的文献求助10
2秒前
3秒前
刘家骏发布了新的文献求助10
3秒前
lx发布了新的文献求助10
4秒前
4秒前
4秒前
zhangyafei发布了新的文献求助10
5秒前
9秒前
抹茶肥肠发布了新的文献求助10
9秒前
10秒前
lily发布了新的文献求助10
10秒前
浮生完成签到,获得积分10
10秒前
11秒前
充电宝应助lx采纳,获得10
11秒前
fairy发布了新的文献求助20
11秒前
大王869完成签到 ,获得积分0
12秒前
12秒前
风想随心完成签到,获得积分10
13秒前
Amber完成签到,获得积分10
13秒前
浮生发布了新的文献求助150
14秒前
打打应助认真的大楚采纳,获得10
14秒前
今天要开心完成签到,获得积分20
14秒前
15秒前
风想随心发布了新的文献求助10
15秒前
yangya应助阳光向上的长峥采纳,获得10
15秒前
江湖郎中发布了新的文献求助10
15秒前
16秒前
刘家骏完成签到,获得积分10
16秒前
天天发布了新的文献求助10
16秒前
16秒前
16秒前
wuludie应助林仰采纳,获得10
17秒前
pluto应助jlwang采纳,获得10
17秒前
miya完成签到,获得积分10
19秒前
19秒前
米花发布了新的文献求助10
20秒前
香蕉觅云应助谭一一采纳,获得10
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302046
求助须知:如何正确求助?哪些是违规求助? 2936566
关于积分的说明 8478154
捐赠科研通 2610354
什么是DOI,文献DOI怎么找? 1425128
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646465