Dynamic bicycle relocation problem with broken bicycles

重新安置 车辆路径问题 计算机科学 运筹学 启发式 布线(电子设计自动化) 运输工程 工程类 计算机网络 操作系统 程序设计语言
作者
Yutong Cai,Ghim Ping Ong,Qiang Meng
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:165: 102877-102877 被引量:1
标识
DOI:10.1016/j.tre.2022.102877
摘要

• This study considers the uncertainties in both broken bicycle quantity and relocation demand during bicycle relocation activities. • This study proposes an effective adaptive relocation strategy for the relocation vehicles to achieve maximum expected satisfied demand. • This study develops an interesting B&P approach with the pricing problem formulated as a MDP to exploit the value of adaptive routing of relocation vehicles. • This study further designs an efficient hybrid heuristics incorporating variable neighbourhood search and partial optimization to solve the large-scale problems. In response to the demand imbalance across stations with broken bicycles in a bicycle sharing system (BSS), this study proposes a novel decision problem that aims to determine the size of the fleet of relocation vehicles, the bicycle stations they are assigned to serve, and efficient adaptive routing plans to ensure a good level of bicycle inventory at each station and on a timely basis, by considering the broken bicycles in each station, which is referred to as the dynamic bicycle relocation problem with broken bicycle consideration (a.k.a DBRPB). Assuming that the numbers of broken bicycles and bicycle relocation demand at each bicycle station are independent random variables and will only be revealed upon the arrival of the relocation vehicle, the objective of the DBRPB is to maximize the expected total satisfied demand, comprising both relocation demand and broken bicycle demand, using the adaptive routing strategy while incorporating the deployment cost of the relocation vehicles. The relocation vehicle will adjust its relocation route after the actual demand is revealed, every time it visits a station. A tailored branch-and-price (B&P) approach is proposed to find the exact optimal solution of the DBRPB. To solve the pricing problem, a tailored Markov decision process (MDP) is formulated in the pricing problem of the B&P approach, to determine both the optimal value of the expected satisfied demand and the next station to visit, given the available information, including time, current station, the unordered set of unvisited stations and the bicycle inventory of the relocation vehicle. A hybrid heuristic method incorporating variable neighbourhood search (VNS) and partial optimization is further proposed to solve the large-scale problem. Numerical experiments using a randomly generated BSS network and the Nanjing BSS respectively are conducted to validate the efficiency and effectiveness of the proposed methodology as well as to obtain insights into the impacts of key parameters on the solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiqiang mu应助11采纳,获得10
1秒前
斯文败类应助11采纳,获得10
1秒前
1秒前
1秒前
lanlan完成签到 ,获得积分10
2秒前
3秒前
3秒前
鹏笑发布了新的文献求助10
5秒前
6秒前
22年春_完成签到,获得积分10
7秒前
7秒前
8秒前
自觉冰之完成签到,获得积分10
8秒前
康康小白杨完成签到 ,获得积分10
8秒前
9秒前
冷酷听枫发布了新的文献求助10
9秒前
Gavin完成签到,获得积分10
9秒前
9秒前
淡然冬灵应助豆杀包采纳,获得30
10秒前
10秒前
花花123发布了新的文献求助10
12秒前
anna1992发布了新的文献求助10
12秒前
liu发布了新的文献求助10
13秒前
xxm发布了新的文献求助10
13秒前
伶俐的不尤完成签到,获得积分10
14秒前
15秒前
baihehuakai发布了新的文献求助30
15秒前
15秒前
王小红发布了新的文献求助10
15秒前
沉默羔羊完成签到,获得积分10
16秒前
22年春_发布了新的文献求助10
17秒前
忐忑的天真完成签到 ,获得积分10
18秒前
aaaaarfv发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
无花果应助yb采纳,获得10
20秒前
111完成签到,获得积分10
22秒前
22秒前
空空完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425233
求助须知:如何正确求助?哪些是违规求助? 4539321
关于积分的说明 14166837
捐赠科研通 4456547
什么是DOI,文献DOI怎么找? 2444245
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412581