克里金
质子交换膜燃料电池
计算机科学
高斯过程
人工神经网络
Levenberg-Marquardt算法
过程(计算)
探地雷达
高斯分布
数据挖掘
回归
回归分析
机器学习
人工智能
工程类
统计
燃料电池
数学
化学
电信
雷达
计算化学
化学工程
操作系统
作者
Lin Tang,Xu Yang,Jingjing Gao,Jikun Huang,Jiarui Cui
标识
DOI:10.1109/ddcls55054.2022.9858570
摘要
Considering the importance of the proton exchange membrane fuel cells(PEMFC) to daily life and industry, this paper makes the remaining useful life(RUL) prediction of the PEMFC based on two different environments. To this end, the improved health indicator is proposed to describe the health state of PEMFC. On this basis, a data-driven method, namely the adaptive Gaussian process regression(GPR) method, is proposed to predict the RUL of PEMFC. The effectiveness of the proposed life prediction method is demonstrated in the aging data set of PEMFC provided by the prognostic and health management(PHM) challenge by a case study, the artificial neural network(ANN) method, and the adaptive GPR method are used to predict the PEMFC's RUL. Results show that the adaptive GPR method achieves better prediction results and provides the probability distribution of the results compared with the ANN method.
科研通智能强力驱动
Strongly Powered by AbleSci AI