Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes

CD8型 免疫系统 基因签名 免疫疗法 生物 基因 T细胞 计算生物学 免疫分型 基因表达 免疫学 抗原 遗传学
作者
Dafeng Xu,Yu Wang,Yonghai Chen,Jinfang Zheng
出处
期刊:Cancer Immunology, Immunotherapy [Springer Nature]
卷期号:72 (3): 647-664 被引量:5
标识
DOI:10.1007/s00262-022-03269-3
摘要

CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助fury0205采纳,获得10
1秒前
俏皮的山水完成签到 ,获得积分10
2秒前
2秒前
不将就发布了新的文献求助10
2秒前
Xantareas完成签到,获得积分10
3秒前
访云发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Sue@00完成签到,获得积分10
4秒前
5秒前
5秒前
1111发布了新的文献求助10
6秒前
6秒前
喵喵酱发布了新的文献求助10
8秒前
9秒前
禾之发布了新的文献求助10
10秒前
Akim应助莫妮卡.宾采纳,获得10
10秒前
杨洋发布了新的文献求助10
11秒前
迅速可愁关注了科研通微信公众号
12秒前
ice发布了新的文献求助10
12秒前
12秒前
zx发布了新的文献求助30
13秒前
chel发布了新的文献求助30
13秒前
14秒前
英姑应助一二一采纳,获得10
14秒前
万能图书馆应助舒舒采纳,获得10
16秒前
17秒前
18秒前
陶醉幻丝完成签到,获得积分10
18秒前
19秒前
情怀应助一丢丢采纳,获得10
19秒前
19秒前
19秒前
莫妮卡.宾完成签到,获得积分10
20秒前
20秒前
20秒前
禾之完成签到,获得积分10
21秒前
顾矜应助李金玉采纳,获得10
21秒前
科研小白白完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444202
求助须知:如何正确求助?哪些是违规求助? 3040237
关于积分的说明 8980504
捐赠科研通 2728907
什么是DOI,文献DOI怎么找? 1496728
科研通“疑难数据库(出版商)”最低求助积分说明 691817
邀请新用户注册赠送积分活动 689386