Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes

CD8型 免疫系统 基因签名 免疫疗法 生物 基因 T细胞 计算生物学 免疫分型 基因表达 免疫学 抗原 遗传学
作者
Dafeng Xu,Yu Wang,Yonghai Chen,Jinfang Zheng
出处
期刊:Cancer Immunology, Immunotherapy [Springer Nature]
卷期号:72 (3): 647-664 被引量:5
标识
DOI:10.1007/s00262-022-03269-3
摘要

CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
难过的初柔应助paopao采纳,获得10
1秒前
zxcvb发布了新的文献求助30
1秒前
星辰大海应助tesla采纳,获得10
2秒前
madison发布了新的文献求助10
2秒前
zoey完成签到,获得积分10
2秒前
黄嘟嘟完成签到,获得积分10
2秒前
NICKPLZ完成签到,获得积分10
2秒前
小鬼完成签到,获得积分10
3秒前
WANGGE完成签到 ,获得积分10
3秒前
小巧凝丹完成签到,获得积分10
5秒前
5秒前
funny发布了新的文献求助10
6秒前
6秒前
大模型应助芝士就是力量采纳,获得10
7秒前
田様应助小闲鱼采纳,获得10
7秒前
活泼凌青完成签到,获得积分10
7秒前
小糊涂仙完成签到,获得积分10
7秒前
科研通AI5应助王悦采纳,获得10
8秒前
杨青月完成签到,获得积分10
8秒前
上官若男应助yuncong323采纳,获得10
8秒前
dandan完成签到,获得积分10
9秒前
风趣的天问完成签到 ,获得积分10
9秒前
yi完成签到,获得积分10
9秒前
姚怜南发布了新的文献求助10
9秒前
王二哈完成签到,获得积分10
10秒前
糊涂的马里奥完成签到 ,获得积分10
10秒前
10秒前
liutg24完成签到,获得积分10
11秒前
Honey完成签到,获得积分10
11秒前
waoller1完成签到,获得积分10
11秒前
灵巧高山应助paopao采纳,获得10
11秒前
zhouxiuman完成签到,获得积分10
11秒前
JJ完成签到,获得积分10
11秒前
打打应助浮生采纳,获得10
11秒前
yep发布了新的文献求助10
12秒前
无辜念文完成签到,获得积分10
12秒前
Yuan应助橙以澄采纳,获得10
12秒前
顺顺完成签到,获得积分20
13秒前
思源应助稳重的糖豆采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910