融合
滤波器(信号处理)
估计员
计算机科学
乘法函数
传感器融合
卡尔曼滤波器
马尔可夫过程
算法
过滤问题
噪音(视频)
控制理论(社会学)
等价(形式语言)
白噪声
噪声测量
数学优化
数学
人工智能
降噪
扩展卡尔曼滤波器
统计
图像(数学)
离散数学
数学分析
哲学
电信
语言学
计算机视觉
控制(管理)
作者
Jing Ma,Sihong Liu,Qi Zhang
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:10: 89011-89021
被引量:2
标识
DOI:10.1109/access.2022.3201013
摘要
This paper is concerned with the fusion filtering problem for stochastic uncertain multisensor systems with time-correlated measurement noises, where the stochastic uncertainties are described by white multiplicative noises, and the additive measurement noises are first-order Gauss-Markov Processes.By introducing the recursive measurement noise estimators, the centralized fusion filter (CFF) based on the idea of batch process and sequential fusion filter (SFF) based on the idea of sequential process are designed in the linear minimum variance (LMV) sense by an innovation analysis approach, respectively.The proposed SFF can achieve the same estimation accuracy as the CFF.It is also globally optimal.The equivalence on estimation accuracy of the SFF and CFF is strictly proved by mathematical induction method.The stability and steady-state properties of the proposed fusion filters are analyzed.Two examples show the effectiveness of the proposed fusion algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI