Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model

连接词(语言学) 中国 单变量 农业 气候学 环境科学 空间分布 自然地理学 联合概率分布 极端气候 地理 降水 多元统计 统计 气象学 计量经济学 数学 地质学 考古
作者
Qi Zhang,Xin Yu,Rangjian Qiu,Zhongxian Liu,Zaiqiang Yang
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:273: 107918-107918 被引量:6
标识
DOI:10.1016/j.agwat.2022.107918
摘要

Compound drought and heat (CDHE) is frequently occurred worldwide and leads to disproportionate impacts on agricultural production than univariate climate extremes, hence continues to receive research attention. However, the driving mechanism and occurrence characteristics of CDHEs remain unclear in some agro-ecological sensitive regions. Here, we adopted standardized precipitation index (SPI) and standardized temperature index (STI) to identify the intensity of drought and heat, respectively, in north China, and then to identify the month and area that most prone to CDHEs. Copulas can simulate the dependence between variables, hence were proposed to construct joint cumulative probability distributions of SPI and STI, so as to simulate the occurrence characteristic of CDHEs. The results demonstrated that in cold season, there were some stations with significant positive correlations between the SPI and STI. However, ∼ 80 % of stations had significant negative correlations between the two variables in July (the month of the year with the most stations). Hence, July is considered as the month most prone to CDHEs among the year in north China. We also found that the Symmetrized Joe-Clayton copula was the best to construct joint probability distributions of SPI and STI in most stations. In July, CDHEs occurred more frequently after 1990s with much higher intensity and wider spatial extent, which was mainly attributed to more severe heats. Spatially, mid-western plain and north mountainous areas were more prone to CDHEs. Our findings provide a better understanding of CDHEs in north China and could offer valuable references for meteorological disaster risk prevention in agriculture production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy发布了新的文献求助20
刚刚
Linanana完成签到,获得积分10
刚刚
刚刚
贾舒涵发布了新的文献求助10
刚刚
Sunrise完成签到,获得积分10
1秒前
HH完成签到,获得积分10
2秒前
科研通AI2S应助飞羽采纳,获得10
2秒前
风中寄云完成签到,获得积分20
2秒前
故意的傲玉应助毛慢慢采纳,获得10
2秒前
2秒前
小白发布了新的文献求助10
2秒前
3秒前
3秒前
马尼拉发布了新的文献求助10
4秒前
CodeCraft应助dildil采纳,获得10
4秒前
4秒前
cyanpomelo完成签到 ,获得积分10
5秒前
5秒前
微笑高山完成签到 ,获得积分10
5秒前
文献查找发布了新的文献求助10
5秒前
加油完成签到,获得积分20
6秒前
Sunrise发布了新的文献求助10
6秒前
tabor发布了新的文献求助10
6秒前
唐妮完成签到,获得积分10
6秒前
啵清啵完成签到,获得积分10
7秒前
7秒前
莉莉发布了新的文献求助10
7秒前
8秒前
NexusExplorer应助平常的雁凡采纳,获得10
8秒前
Silverexile完成签到,获得积分10
9秒前
9秒前
唠叨的曼易完成签到,获得积分10
9秒前
Ymj关闭了Ymj文献求助
10秒前
木木雨完成签到,获得积分10
10秒前
10秒前
Harlotte发布了新的文献求助20
10秒前
LINxu发布了新的文献求助10
10秒前
今后应助加油采纳,获得10
10秒前
moonlight发布了新的文献求助10
11秒前
IMkily完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759