Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model

连接词(语言学) 中国 单变量 农业 气候学 环境科学 空间分布 自然地理学 联合概率分布 地理 降水 多元统计 统计 气象学 计量经济学 数学 地质学 考古
作者
Qi Zhang,Xin Yu,Rangjian Qiu,Zhongxian Liu,Zaiqiang Yang
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:273: 107918-107918 被引量:18
标识
DOI:10.1016/j.agwat.2022.107918
摘要

Compound drought and heat (CDHE) is frequently occurred worldwide and leads to disproportionate impacts on agricultural production than univariate climate extremes, hence continues to receive research attention. However, the driving mechanism and occurrence characteristics of CDHEs remain unclear in some agro-ecological sensitive regions. Here, we adopted standardized precipitation index (SPI) and standardized temperature index (STI) to identify the intensity of drought and heat, respectively, in north China, and then to identify the month and area that most prone to CDHEs. Copulas can simulate the dependence between variables, hence were proposed to construct joint cumulative probability distributions of SPI and STI, so as to simulate the occurrence characteristic of CDHEs. The results demonstrated that in cold season, there were some stations with significant positive correlations between the SPI and STI. However, ∼ 80 % of stations had significant negative correlations between the two variables in July (the month of the year with the most stations). Hence, July is considered as the month most prone to CDHEs among the year in north China. We also found that the Symmetrized Joe-Clayton copula was the best to construct joint probability distributions of SPI and STI in most stations. In July, CDHEs occurred more frequently after 1990s with much higher intensity and wider spatial extent, which was mainly attributed to more severe heats. Spatially, mid-western plain and north mountainous areas were more prone to CDHEs. Our findings provide a better understanding of CDHEs in north China and could offer valuable references for meteorological disaster risk prevention in agriculture production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助reading gene采纳,获得10
1秒前
活泼水桃完成签到,获得积分10
1秒前
大大哈哈完成签到 ,获得积分10
1秒前
在木星发布了新的文献求助10
1秒前
qpzn完成签到,获得积分10
1秒前
小小阿杰完成签到,获得积分10
1秒前
不吃鱼的芹菜完成签到,获得积分10
1秒前
jjjjchou完成签到,获得积分10
2秒前
2秒前
笛子完成签到,获得积分10
2秒前
Owen应助科研通管家采纳,获得10
4秒前
研友_Y59785应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
研友_Y59785应助科研通管家采纳,获得20
4秒前
Lee发布了新的文献求助10
4秒前
OAO完成签到,获得积分10
4秒前
4秒前
111完成签到,获得积分10
4秒前
大个应助kkk采纳,获得10
5秒前
科研通AI2S应助wangyinghao采纳,获得10
5秒前
激昂的芹发布了新的文献求助10
5秒前
无花果应助孟孟采纳,获得10
5秒前
6秒前
chen发布了新的文献求助10
6秒前
宋晴完成签到,获得积分10
7秒前
紧张的滑板完成签到,获得积分10
8秒前
123完成签到,获得积分20
8秒前
桃紫完成签到,获得积分10
8秒前
Ding应助tp040900采纳,获得10
9秒前
研友_V8QE78完成签到,获得积分10
9秒前
10秒前
10秒前
Xiangyang完成签到 ,获得积分10
10秒前
10秒前
邓谷云完成签到,获得积分10
10秒前
superhero完成签到,获得积分10
11秒前
不是山谷完成签到,获得积分10
12秒前
花生完成签到,获得积分10
13秒前
carnationli发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259