过电位
催化作用
密度泛函理论
电化学
合金
选择性
材料科学
电催化剂
化学工程
纳米技术
物理化学
化学
计算化学
电极
冶金
有机化学
工程类
作者
Ruikuan Xie,Zhufeng Hou,Ruikuan Xie
摘要
Developing efficient catalysts for electrochemical CO2 reduction reaction (ECO2RR) to hydrocarbons is becoming increasingly important but still challenging due to their high overpotential and poor selectivity. Here, the famous Heusler alloys are investigated as ECO2RR catalysts for the first time by means of density functional theory calculations. The linear scaling relationship between the adsorption energies of CHO (and COOH) and CO intermediates is broken and, thus, the overpotential can be tuned regularly by chemically permuting different 3d, 4d, or 5d transition metals (TMs) in Heusler alloy Cu2TMAl. Cu2ZnAl shows the best activity among all the 30 Heusler alloys considered in the present study, with 41% improvement in energy efficiency compared to pure Cu electrode. Cu2PdAl, Cu2AgAl, Cu2PtAl, and Cu2AuAl are also good candidates. The calculations on the competition between hydrogen evolution reaction and CO2RR indicate that Cu2ZnAl is also the one having the best selectivity toward hydrocarbons. This work identifies the possibility of applying the Heusler alloy as an efficient ECO2RR catalyst. Since thousands of Heusler alloys have been found in experiments, the present study also encourages the search for more promising candidates in this broad research area.
科研通智能强力驱动
Strongly Powered by AbleSci AI