Spatial–Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images

变更检测 遥感 土地覆盖 计算机科学 卷积神经网络 环境科学 比例(比率) 人工智能 土地利用 地质学 地理 地图学 工程类 土木工程
作者
Zhiyong Lv,Fengjun Wang,Guoqing Cui,Jón Atli Benediktsson,Tao Lei,Weiwei Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:70
标识
DOI:10.1109/tgrs.2022.3197901
摘要

Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change into the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this paper, we design a novel neural network with spatial-spectral attention mechanism and multi-scale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth’s surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of 10 quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement about 0.08%~14.87% in terms of OA for Dataset-A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吕尔芙发布了新的文献求助10
1秒前
王炸完成签到,获得积分10
1秒前
科研通AI6应助windli采纳,获得10
2秒前
Chen完成签到,获得积分10
2秒前
搜集达人应助往好处想采纳,获得10
2秒前
ghnt发布了新的文献求助10
2秒前
化简为繁发布了新的文献求助30
3秒前
林lulu发布了新的文献求助10
3秒前
高挑的不凡完成签到,获得积分10
3秒前
刻苦的芝麻完成签到,获得积分10
3秒前
猪皮恶人发布了新的文献求助10
4秒前
5秒前
科研通AI6应助研友_nqa7On采纳,获得10
6秒前
lvlv发布了新的文献求助10
6秒前
vivi完成签到,获得积分10
6秒前
浅唱夏末完成签到,获得积分10
6秒前
学术欲望不断膨胀完成签到 ,获得积分10
6秒前
核动力驴完成签到,获得积分10
6秒前
背后妙旋发布了新的文献求助10
6秒前
情怀应助wjy321采纳,获得10
6秒前
afra完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
解语花发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
11秒前
emmm完成签到,获得积分10
11秒前
科研通AI2S应助解语花采纳,获得10
11秒前
Lucas应助lvlv采纳,获得10
12秒前
科研通AI2S应助林lulu采纳,获得10
13秒前
vivi发布了新的文献求助10
13秒前
13秒前
科目三应助LL采纳,获得10
13秒前
英俊的铭应助卫海亦采纳,获得10
13秒前
13秒前
mk完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428950
求助须知:如何正确求助?哪些是违规求助? 4542495
关于积分的说明 14181096
捐赠科研通 4460186
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414018