Spatial–Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images

变更检测 遥感 土地覆盖 计算机科学 卷积神经网络 环境科学 比例(比率) 人工智能 土地利用 地质学 地理 地图学 工程类 土木工程
作者
Zhiyong Lv,Fengjun Wang,Guoqing Cui,Jón Atli Benediktsson,Tao Lei,Weiwei Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:70
标识
DOI:10.1109/tgrs.2022.3197901
摘要

Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change into the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this paper, we design a novel neural network with spatial-spectral attention mechanism and multi-scale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth’s surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of 10 quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement about 0.08%~14.87% in terms of OA for Dataset-A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阿琪没速完成签到 ,获得积分10
2秒前
吕亦寒发布了新的文献求助10
3秒前
3秒前
4秒前
oceanao完成签到 ,获得积分10
5秒前
儒雅的焦发布了新的文献求助10
5秒前
6秒前
6秒前
共享精神应助轻松刚采纳,获得10
6秒前
7秒前
10秒前
10秒前
Orange应助鞑靼采纳,获得10
10秒前
积极废物完成签到 ,获得积分10
10秒前
赞zan发布了新的文献求助10
11秒前
哈哈哈哈啊哈完成签到,获得积分10
11秒前
11秒前
11秒前
robi发布了新的文献求助10
12秒前
Ava应助Wav采纳,获得10
12秒前
nanimonai7发布了新的文献求助10
12秒前
12秒前
乐乐完成签到 ,获得积分10
12秒前
哔哔鱼完成签到,获得积分10
13秒前
21完成签到,获得积分10
15秒前
泡芙不甜完成签到 ,获得积分10
15秒前
16秒前
DaisyChan完成签到 ,获得积分10
16秒前
阿切发布了新的文献求助10
16秒前
17秒前
赞zan完成签到,获得积分10
17秒前
彭彭完成签到,获得积分10
18秒前
18秒前
pure123完成签到 ,获得积分10
19秒前
sustwanli发布了新的文献求助10
19秒前
了该完成签到,获得积分10
20秒前
852应助江浪浪采纳,获得10
20秒前
21秒前
现代的雨竹完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825