Successive Trajectory Privacy Protection with Semantics Prediction Differential Privacy

差别隐私 计算机科学 弹道 职位(财务) 数据发布 隐私软件 信息敏感性 信息隐私 出版 计算机安全 数据挖掘 广告 物理 天文 业务 出版 经济 法学 政治学 财务
作者
Jing Zhang,Yanzi Li,Qian Ding,Liwei Lin,Xiucai Ye
出处
期刊:Entropy [MDPI AG]
卷期号:24 (9): 1172-1172 被引量:10
标识
DOI:10.3390/e24091172
摘要

The publication of trajectory data provides critical information for various location-based services, and it is critical to publish trajectory data safely while ensuring its availability. Differential privacy is a promising privacy protection technology for publishing trajectory data securely. Most of the existing trajectory privacy protection schemes do not take into account the user's preference for location and the influence of semantic location. Besides, differential privacy for trajectory protection still has the problem of balance between the privacy budget and service quality. In this paper, a semantics- and prediction-based differential privacy protection scheme for trajectory data is proposed. Firstly, trajectory data are transformed into a prefix tree structure to ensure that they satisfy differential privacy. Secondly, considering the influence of semantic location on trajectory, semantic sensitivity combined with location check-in frequency is used to calculate the sensitivity of each position in the trajectory. The privacy level of the position is classified by setting thresholds. Moreover, the corresponding privacy budget is allocated according to the location privacy level. Finally, a Markov chain is used to predict the attack probability of each position in the trajectory. On this basis, the allocation of the privacy budget is further adjusted and its utilization rate is improved. Thus, the problem of the balance between the privacy budget and service quality is solved. Experimental results show that the proposed scheme is able to ensure data availability while protecting data privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uuu发布了新的文献求助10
刚刚
PengM发布了新的文献求助10
1秒前
2秒前
2秒前
爆米花应助kaka采纳,获得10
3秒前
汤号号完成签到,获得积分10
4秒前
小鸣完成签到 ,获得积分10
5秒前
领导范儿应助梁锦澎采纳,获得10
5秒前
打打应助毛毛采纳,获得10
5秒前
6秒前
uuu完成签到,获得积分10
6秒前
8秒前
汤号号发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
深情安青应助彭于晏采纳,获得10
10秒前
11秒前
11秒前
Owen应助西西歪采纳,获得10
12秒前
12秒前
一安完成签到,获得积分10
12秒前
QT_429发布了新的文献求助10
13秒前
13秒前
14秒前
橙子1234关注了科研通微信公众号
14秒前
14秒前
15秒前
Olivia完成签到 ,获得积分10
16秒前
乐观静曼完成签到,获得积分10
17秒前
曲奇吐司发布了新的文献求助10
18秒前
2534165发布了新的文献求助30
18秒前
深海蓝鱼发布了新的文献求助10
18秒前
李沁宣完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
英姑应助高高的绮梅采纳,获得10
19秒前
19秒前
20秒前
aikeyan发布了新的文献求助10
21秒前
hx完成签到 ,获得积分10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762881
求助须知:如何正确求助?哪些是违规求助? 5537393
关于积分的说明 15403910
捐赠科研通 4898922
什么是DOI,文献DOI怎么找? 2635190
邀请新用户注册赠送积分活动 1583298
关于科研通互助平台的介绍 1538405