甜瓜
转录因子
成熟
激活剂(遗传学)
生物
黄瓜
电泳迁移率测定
生物化学
胡萝卜素
发起人
类胡萝卜素
番茄红素
酵母
基因表达
细胞生物学
基因
植物
园艺
作者
Yang Zhao,Xiaoyu Duan,Lixia Wang,Ge Gao,Chuanqiang Xu,Hongyan Qi
摘要
Ripened oriental melon (Cucumis melo) with orange-colored flesh is rich in β-carotene. Lycopene β-cyclase (LCYB) is the synthetic enzyme that directly controls the massive accumulation of β-carotene. However, the regulatory mechanism underlying the CmLCYB-mediated β-carotene accumulation in oriental melon is fairly unknown. Here, we screened and identified a transcription factor, CmNAC34, by combining bioinformatics analysis and yeast one-hybrid screen with CmLCYB promoter. CmNAC34 was located in the nucleus and acted as a transcriptional activator. The expression profile of CmNAC34 was consistent with that of CmLCYB during the fruit ripening. Additionally, the transient overexpression of CmNAC34 in oriental melon fruit promoted the expression of CmLCYB and enhanced β-carotene concentration, while transient silence of CmNAC34 in fruit was an opposite trend, which indicated CmNAC34 could modulate CmLCYB-mediated β-carotene biosynthesis in oriental melon. Finally, the yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), β-glucuronidase (GUS) analysis assay, and luciferase reporter (LUC) assay indicated that CmNAC34 could bind to the promoter of CmLCYB and positively regulated the CmLCYB transcription level. These findings suggested that CmNAC34 acted as an activator to regulate β-carotene accumulation by directly binding the promoter of CmLCYB, which provides new insight into the regulatory mechanism of carotenoid metabolism during the development and ripening of oriental melon.
科研通智能强力驱动
Strongly Powered by AbleSci AI