ESA: External Space Attention Aggregation for Image-Text Retrieval

计算机科学 嵌入 图像检索 水准点(测量) 特征(语言学) 特征向量 空格(标点符号) 人工智能 语言模型 图像(数学) 情报检索 模式识别(心理学) 哲学 操作系统 语言学 地理 大地测量学
作者
Hongguang Zhu,Chunjie Zhang,Yunchao Wei,Shujuan Huang,Yao Zhao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6131-6143 被引量:15
标识
DOI:10.1109/tcsvt.2023.3253548
摘要

Due to the large gap between vision and language modalities, effective and efficient image-text retrieval is still an unsolved problem. Recent progress devotes to unilaterally pursuing retrieval accuracy by either entangled image-text interaction or large-scale vision-language pre-training in a brute force way. However, the former often leads to unacceptable retrieval time explosion when deploying on large-scale databases. The latter heavily relies on the extra corpus to learn better alignment in the feature space while obscuring the contribution of the network architecture. In this work, we aim to investigate a trade-off to balance effectiveness and efficiency. To this end, on the premise of efficient retrieval, we propose the plug-and-play External Space attention Aggregation (ESA) module to enable element-wise fusion of modal features under spatial dimensional attention. Based on flexible spatial awareness, we further propose the Self-Expanding triplet Loss (SEL) to expand the representation space of samples and optimize the alignment of embedding space. The extensive experiments demonstrate the effectiveness of our method on two benchmark datasets. With identical visual and textual backbones, our single model has outperformed the ensemble modal of similar methods, and our ensemble model can further expand the advantage. Meanwhile, compared with the vision-language pre-training embedding-base method that used $83\times $ image-text pairs than ours, our approach not only surpasses in performance but also accelerates $3\times $ on retrieval time. Codes and pre-trained models are available at https://github.com/KevinLight831/ESA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯成风发布了新的文献求助30
刚刚
李健应助Weirdo采纳,获得10
1秒前
1秒前
英俊的铭应助皇甫契采纳,获得10
2秒前
研友_LJGXgn完成签到,获得积分10
2秒前
2秒前
Roach完成签到,获得积分10
2秒前
Jasper应助怕黑三毒采纳,获得10
3秒前
安静的乌冬面完成签到 ,获得积分10
3秒前
3秒前
csy完成签到,获得积分10
4秒前
melody完成签到,获得积分10
4秒前
5秒前
5秒前
cca发布了新的文献求助10
5秒前
BabiboSu发布了新的文献求助20
5秒前
LR完成签到,获得积分20
5秒前
追寻冰淇淋应助lemon采纳,获得30
5秒前
5秒前
天天快乐应助ccc采纳,获得10
6秒前
6秒前
耶耶完成签到,获得积分10
6秒前
春色未软旧苔痕完成签到 ,获得积分10
7秒前
怕黑愫应助VAE采纳,获得10
8秒前
王梦龙完成签到,获得积分20
8秒前
8秒前
8秒前
sum.wang完成签到,获得积分10
9秒前
思源应助zyl采纳,获得10
9秒前
10秒前
明理鱼完成签到,获得积分10
10秒前
我是老大应助负责乐安采纳,获得10
10秒前
皇甫契完成签到,获得积分10
10秒前
努力生活的小柴完成签到,获得积分10
10秒前
10秒前
11秒前
77完成签到 ,获得积分10
11秒前
852应助曾经高跟鞋采纳,获得10
12秒前
12秒前
充电宝应助秃顶双马尾采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798