ESA: External Space Attention Aggregation for Image-Text Retrieval

计算机科学 嵌入 图像检索 水准点(测量) 特征(语言学) 特征向量 空格(标点符号) 人工智能 语言模型 图像(数学) 情报检索 模式识别(心理学) 语言学 哲学 大地测量学 地理 操作系统
作者
Hongguang Zhu,Chunjie Zhang,Yunchao Wei,Shujuan Huang,Yao Zhao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6131-6143 被引量:27
标识
DOI:10.1109/tcsvt.2023.3253548
摘要

Due to the large gap between vision and language modalities, effective and efficient image-text retrieval is still an unsolved problem. Recent progress devotes to unilaterally pursuing retrieval accuracy by either entangled image-text interaction or large-scale vision-language pre-training in a brute force way. However, the former often leads to unacceptable retrieval time explosion when deploying on large-scale databases. The latter heavily relies on the extra corpus to learn better alignment in the feature space while obscuring the contribution of the network architecture. In this work, we aim to investigate a trade-off to balance effectiveness and efficiency. To this end, on the premise of efficient retrieval, we propose the plug-and-play External Space attention Aggregation (ESA) module to enable element-wise fusion of modal features under spatial dimensional attention. Based on flexible spatial awareness, we further propose the Self-Expanding triplet Loss (SEL) to expand the representation space of samples and optimize the alignment of embedding space. The extensive experiments demonstrate the effectiveness of our method on two benchmark datasets. With identical visual and textual backbones, our single model has outperformed the ensemble modal of similar methods, and our ensemble model can further expand the advantage. Meanwhile, compared with the vision-language pre-training embedding-base method that used $83\times $ image-text pairs than ours, our approach not only surpasses in performance but also accelerates $3\times $ on retrieval time. Codes and pre-trained models are available at https://github.com/KevinLight831/ESA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助可耐的不平采纳,获得10
1秒前
丘比特应助可耐的不平采纳,获得10
1秒前
1秒前
1秒前
coco发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
研友_VZG7GZ应助M27采纳,获得10
3秒前
luchong完成签到,获得积分10
3秒前
hylqj123发布了新的文献求助20
3秒前
cc完成签到 ,获得积分10
4秒前
zjl关闭了zjl文献求助
4秒前
4秒前
123发布了新的文献求助10
4秒前
francesliu完成签到,获得积分10
5秒前
yyhgyg完成签到,获得积分10
5秒前
yy发布了新的文献求助10
5秒前
聪慧翠风发布了新的文献求助10
5秒前
桐桐应助小胡采纳,获得10
6秒前
ajia应助专注白昼采纳,获得10
6秒前
LJJ完成签到,获得积分10
6秒前
tutu完成签到,获得积分20
6秒前
聪111应助淡淡的南风采纳,获得100
6秒前
6秒前
Mic应助天真千易采纳,获得10
6秒前
浮游应助天真千易采纳,获得10
6秒前
Li发布了新的文献求助10
6秒前
Mic应助天真千易采纳,获得30
6秒前
yy完成签到,获得积分10
6秒前
asdf应助天真千易采纳,获得10
6秒前
pluto应助天真千易采纳,获得10
6秒前
浮游应助天真千易采纳,获得10
7秒前
pluto应助天真千易采纳,获得10
7秒前
7秒前
浮游应助天真千易采纳,获得10
7秒前
Harry应助天真千易采纳,获得10
7秒前
浮游应助天真千易采纳,获得10
7秒前
好久不见发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978