ESA: External Space Attention Aggregation for Image-Text Retrieval

计算机科学 嵌入 图像检索 水准点(测量) 特征(语言学) 特征向量 空格(标点符号) 人工智能 语言模型 图像(数学) 情报检索 模式识别(心理学) 语言学 哲学 大地测量学 地理 操作系统
作者
Hongguang Zhu,Chunjie Zhang,Yunchao Wei,Shujuan Huang,Yao Zhao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6131-6143 被引量:27
标识
DOI:10.1109/tcsvt.2023.3253548
摘要

Due to the large gap between vision and language modalities, effective and efficient image-text retrieval is still an unsolved problem. Recent progress devotes to unilaterally pursuing retrieval accuracy by either entangled image-text interaction or large-scale vision-language pre-training in a brute force way. However, the former often leads to unacceptable retrieval time explosion when deploying on large-scale databases. The latter heavily relies on the extra corpus to learn better alignment in the feature space while obscuring the contribution of the network architecture. In this work, we aim to investigate a trade-off to balance effectiveness and efficiency. To this end, on the premise of efficient retrieval, we propose the plug-and-play External Space attention Aggregation (ESA) module to enable element-wise fusion of modal features under spatial dimensional attention. Based on flexible spatial awareness, we further propose the Self-Expanding triplet Loss (SEL) to expand the representation space of samples and optimize the alignment of embedding space. The extensive experiments demonstrate the effectiveness of our method on two benchmark datasets. With identical visual and textual backbones, our single model has outperformed the ensemble modal of similar methods, and our ensemble model can further expand the advantage. Meanwhile, compared with the vision-language pre-training embedding-base method that used $83\times $ image-text pairs than ours, our approach not only surpasses in performance but also accelerates $3\times $ on retrieval time. Codes and pre-trained models are available at https://github.com/KevinLight831/ESA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ohh完成签到,获得积分10
1秒前
我是老大应助研友_LOokQL采纳,获得10
1秒前
yutingemail发布了新的文献求助10
2秒前
2秒前
2秒前
大个应助平常的宝马采纳,获得10
2秒前
lily发布了新的文献求助10
3秒前
4秒前
橙橙发布了新的文献求助10
4秒前
hazekurt完成签到,获得积分10
4秒前
董晏殊完成签到,获得积分10
4秒前
玖锱完成签到,获得积分20
4秒前
4秒前
hzzzz完成签到,获得积分10
4秒前
佳怡完成签到,获得积分10
4秒前
4秒前
蕊蕊完成签到,获得积分10
5秒前
5秒前
5秒前
求助人员发布了新的文献求助30
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
微笑发布了新的文献求助10
6秒前
6秒前
Hearn发布了新的文献求助10
6秒前
英俊的铭应助Regina采纳,获得10
7秒前
奋斗黎昕完成签到,获得积分10
7秒前
小易发布了新的文献求助10
7秒前
7秒前
歪西西完成签到,获得积分10
7秒前
娜娜完成签到,获得积分20
7秒前
一玥完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
zzr123发布了新的文献求助10
8秒前
8秒前
8秒前
华hua完成签到,获得积分10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066