ESA: External Space Attention Aggregation for Image-Text Retrieval

计算机科学 嵌入 图像检索 水准点(测量) 特征(语言学) 特征向量 空格(标点符号) 人工智能 语言模型 图像(数学) 情报检索 模式识别(心理学) 语言学 哲学 大地测量学 地理 操作系统
作者
Hongguang Zhu,Chunjie Zhang,Yunchao Wei,Shujuan Huang,Yao Zhao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6131-6143 被引量:27
标识
DOI:10.1109/tcsvt.2023.3253548
摘要

Due to the large gap between vision and language modalities, effective and efficient image-text retrieval is still an unsolved problem. Recent progress devotes to unilaterally pursuing retrieval accuracy by either entangled image-text interaction or large-scale vision-language pre-training in a brute force way. However, the former often leads to unacceptable retrieval time explosion when deploying on large-scale databases. The latter heavily relies on the extra corpus to learn better alignment in the feature space while obscuring the contribution of the network architecture. In this work, we aim to investigate a trade-off to balance effectiveness and efficiency. To this end, on the premise of efficient retrieval, we propose the plug-and-play External Space attention Aggregation (ESA) module to enable element-wise fusion of modal features under spatial dimensional attention. Based on flexible spatial awareness, we further propose the Self-Expanding triplet Loss (SEL) to expand the representation space of samples and optimize the alignment of embedding space. The extensive experiments demonstrate the effectiveness of our method on two benchmark datasets. With identical visual and textual backbones, our single model has outperformed the ensemble modal of similar methods, and our ensemble model can further expand the advantage. Meanwhile, compared with the vision-language pre-training embedding-base method that used $83\times $ image-text pairs than ours, our approach not only surpasses in performance but also accelerates $3\times $ on retrieval time. Codes and pre-trained models are available at https://github.com/KevinLight831/ESA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
镓氧锌钇铀应助空白采纳,获得20
1秒前
镓氧锌钇铀应助小椰采纳,获得10
2秒前
定风波发布了新的文献求助10
3秒前
乐乐应助qqq采纳,获得10
3秒前
思源应助喜羊羊采纳,获得10
3秒前
小蘑菇应助brick2024采纳,获得10
4秒前
嘻嘻哈哈应助livra1058采纳,获得10
4秒前
科研王应助杨昌琪采纳,获得10
5秒前
懒了发布了新的文献求助10
5秒前
6秒前
8R60d8应助shinn采纳,获得10
7秒前
7秒前
高兴香彤发布了新的文献求助10
9秒前
韦老虎发布了新的文献求助10
9秒前
无私醉蝶发布了新的文献求助10
11秒前
11秒前
侧耳倾听完成签到,获得积分10
11秒前
11秒前
小小完成签到,获得积分10
11秒前
xd关闭了xd文献求助
12秒前
sea完成签到 ,获得积分10
13秒前
张风琴发布了新的文献求助10
13秒前
14秒前
李爱国应助海之恋心采纳,获得10
15秒前
小小发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
djshao发布了新的文献求助10
15秒前
侧耳倾听发布了新的文献求助10
16秒前
韦老虎发布了新的文献求助10
16秒前
传奇3应助circles采纳,获得10
17秒前
18秒前
18秒前
8R60d8应助shinn采纳,获得10
18秒前
18秒前
所所应助阿关采纳,获得10
18秒前
汉堡包应助无私醉蝶采纳,获得10
18秒前
18秒前
Luojiayi发布了新的文献求助10
19秒前
蚊蚊爱读书应助木木彡采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474365
求助须知:如何正确求助?哪些是违规求助? 4576170
关于积分的说明 14356808
捐赠科研通 4504096
什么是DOI,文献DOI怎么找? 2467953
邀请新用户注册赠送积分活动 1455656
关于科研通互助平台的介绍 1429644